Event detection and localization for small mobile robots using reservoir computing
Title | Event detection and localization for small mobile robots using reservoir computing |
Publication Type | Journal Article |
Year of Publication | 2008 |
Authors | Antonelo EA, Schrauwen B, Stroobandt D |
Journal | Neural Networks |
Volume | 21 |
Pagination | 862–871 |
Abstract | Reservoir Computing (RC) techniques use a fixed (usually randomly created) re- current neural network, or more generally any dynamic system, which operates at the edge of stability, where only a linear static readout output layer is trained by standard linear regression methods. In this work, RC is used for detecting complex events in autonomous robot navigation. This can be extended to robot localiza- tion tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an implicit map of the environment (after learning) that is used for efficient localization by simply processing the stream of distance sensors. These techniques are demonstrated in both a simple simulation environment and in the physically realistic Webots simulation of the commercially available e-puck robot, using several complex and even dynamic environments. |
DOI | 10.1016/j.neunet.2008.06.010 |