
Event detection and localization for small

mobile robots using reservoir computing 2

E. A. Antonelo ∗,1, B. Schrauwen and D. Stroobandt

Department of Electronics and Information Systems, Ghent University

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

Abstract

Reservoir Computing (RC) techniques use a fixed (usually randomly created) re-
current neural network, or more generally any dynamic system, which operates at
the edge of stability, where only a linear static readout output layer is trained by
standard linear regression methods. In this work, RC is used for detecting complex
events in autonomous robot navigation. This can be extended to robot localiza-
tion tasks which are solely based on a few low-range, high-noise sensory data. The
robot thus builds an implicit map of the environment (after learning) that is used
for efficient localization by simply processing the stream of distance sensors. These
techniques are demonstrated in both a simple simulation environment and in the
physically realistic Webots simulation of the commercially available e-puck robot,
using several complex and even dynamic environments.

Key words: Reservoir Computing, Robot localization, Event detection

1 Introduction

Autonomous robot navigation systems have been extensively developed in the
literature (Arkin, 1998; Antonelo et al., 2006; Guivant et al., 2000). Early
navigation strategies are either deliberative (generation of robot trajectories

∗ Corresponding author. Tel.: +32/9 264 34 04, fax: +32/9 264 35 94
Email address: eric.antonelo@elis.ugent.be (E. A. Antonelo).
URL: http://www.elis.ugent.be/SNN (E. A. Antonelo).

1 Eric A. Antonelo is sponsored by a BOF grant.
2 This document is a draft version of the paper to appear in the Special Issue
of Neural Networks on Computational and Biological Inspired Neural Networks -
ICANN 2007 Porto.

Preprint submitted to Elsevier Science 22 April 2008

based on path planning) or reactive (robot control based on a direct mapping
of sensory input to actions). Current state-of-the-art autonomous robot con-
trol architectures are hybrid (Arkin, 1998): they have an underlying reactive
controller which takes care of the real-time basic behaviors such as obstacle
avoidance; while an upper deliberative control layer steers this reactive part
for performing declarative high level tasks such as planning. Information flow
in this architecture is both downwards, from abstract deliberative tasks to con-
crete physical reactive behaviors, and upwards, from physical data to abstract
symbols used for deliberative planning.

This paper investigates two cases of upward information flow: a system for
recognizing complex events in particular environments (such as detecting if the
robot goes through a door); and a system for determining the current robot
location. Both are based solely on low-range, high-noise sensory information,
typically found in small and cheap mobile robots. Both tasks are achieved
using the same setup.

These tasks have been shown to be difficult (Bailey and Durrant-Whyte, 2006).
Traditional algorithms based on the Simultaneous Localization and Mapping
(SLAM) concept are expensive to implement due to high computational and
memory demands and also hold uncertainties during the calculation of the
robot’s pose (Bailey and Durrant-Whyte, 2006). They usually need high pre-
cision ranging data from, for example, a 2D laser range scanner. These devices
are currently still very expensive, consume a lot of power, and cannot be ap-
plied in small robots. Cheap, small and lightweight robots that have a high
battery autonomy will thus not be able to use a SLAM based approach. These
robot platforms usually only have access to a limited number of ranging sen-
sors which are low range and have high noise.

This work uses an implicit way of forming a representation of the robot’s en-
vironment that is based on a Recurrent Neural Network (RNN), more specifi-
cally using Reservoir Computing (RC). This is a term that groups three simi-
lar computing techniques, namely, Echo State Networks (Jaeger, 2001a), Liq-
uid State Machines (Maass et al., 2002), and BackPropagation DeCorrelation
(Steil, 2004). All three techniques are characterized by having a fixed (usu-
ally random) RNN that is used as a reservoir of rich dynamics and a linear
static readout output layer (see Fig. 1). Only the readout layer is trained by
supervised learning, while the recurrent part of the network (the so called
reservoir) has fixed weights, but is scaled so that its dynamic regime is at the
edge of stability. Theoretical analysis of reservoir computing methods (Jaeger,
2001b) and a broad range of applications (Verstraeten et al., 2007) (which
sometimes even drastically outperform the current state-of-the-art (Jaeger and
Haas, 2004)) show that RC is very powerful and overcomes many of the prob-
lems of traditional RNN training such as slow convergence, bifurcations and
high computational requirements.

2

The short-term memory, present in these networks, is crucial for solving the
event detection and localization tasks. It is not only the instantaneous sen-
sory inputs that are needed to solve the tasks, but also the sensory history
(Schönherr et al., 2001) and dynamics.

It has already been shown in (Hertzberg et al., 2002) that RC can be used to
detect events in an autonomous robot setting. This work extends these results
by also considering dynamic environments for event detection, and goes largely
beyond that work by using it to construct implicit maps of the environment
for robot localization.

The idea of employing a neural network as a localization model for the robot
is also inspired by biological systems. Experiments accomplished on rats show
that their hippocampus forms activation patterns that are associated with
locations visited by the rat. These so called place cells encode the spatial lo-
cation of the animal into its environment. They fire when the animal is in
a particular location (O’Keefe and Dostrovsky, 1971). A similar approach is
used in this work where distinct outputs are used to encode specific locations
in the environment. Other models in literature seek to represent place cells
by using: unsupervised growing networks and Hebbian-type learning rules be-
tween neural populations (Arleo et al., 2004; Stroesslin et al., 2005); and a
hierarchy of Slow Feature Analysis nodes for self-organized formation of place
cells (Franzius et al., 2007) (these models are based on visual (pixel-based)
stimuli as external sensory input).

The experiments in this work 3 are performed using both an autonomous robot
simulator developed by (Antonelo et al., 2006) and the physically realistic We-
bots (Michel, 2004) simulation of an e-puck robot (e-puck, 2007). The datasets
generated by these simulators are used to train a RC system to detect events
as well as to predict the robot location in several complex and dynamic envi-
ronments. The training is done in a supervised fashion, but we plan to develop
an autonomous and on-line way of learning novel locations as the robot drives
in its environment (resembling the place cells in biological systems).

This work is organized as follows. In Section 2 we give an overview of Reservoir
Computing as well as the RC model used for the following robotic experiments.
Section 3 presents the two different robot models and simulators used in the
experiments. The problems of event detection and robot localization (and their
respective experimental results) are presented in Sections 4 and 5, respectively.
Conclusions and future research directions are given in Section 6.

3 This paper is an extended version of (Antonelo et al., 2007b) which was presented
at ICANN 2007.

3

2 Reservoir computing

In this work, we use the Echo State Network approach as learning model for
performing event detection as well as robot localization. An ESN is composed
of a discrete hyperbolic-tangent RNN (i.e., the reservoir) and a linear readout
output layer which maps the reservoir states to the desired output. The general
state update equation for the nodes in the reservoir and the readout output
equation are as follows:

x(t + 1) = f
(

Wres
resx(t) + Wres

inpu(t) + Wres
outy(t) + Wres

bias

)

(1)

y(t + 1) =Wout
res x(t + 1) + Wout

inpu(t) + Wout
outy(t) + Wout

bias (2)

where: u(t) denotes the input at time t; x(t) represents the reservoir state;
y(t) is the output; and f() = tanh() is the hyperbolic tangent activation
function (most common type of activation function used for ESNs). The initial
state is set to x(0) = 0. All weight matrices to the reservoir (denoted as
Wres

·
) are initialized randomly (represented by solid arrows in Fig. 1), while

all connections to the output (denoted as Wout
·

) are trained (represented by
dashed arrows in Fig. 1).

However, we discard the readout’s output feedback to the reservoir because
the problems in this work do not require a very long-term memory. We also
add a leak rate α as in (Schrauwen et al., 2007) to the state update equation in
order to make the reservoir timescale more flexible in matching the timescale
of the input. The changes can be seen in (3).

x(t + 1) = f
(

(1 − α)x(t) + α(Wres
resx(t) + Wres

inpu(t) + Wres
bias)

)

. (3)

The output calculation gets simpler once we do not use the direct connections
from input to output neither the connections from output to output:

y(t + 1) = Wout
res x(t + 1) + Wout

bias. (4)

The leak rate α can effectively tune the dynamics of the reservoir. If the leak
rate is chosen correctly, the reservoir dynamics can be adjusted to match the
timescale of the input flow, making it possible to achieve enhanced perfor-
mance (this can also be achieved by resampling the input (Jaeger et al., 2007;
Antonelo et al., 2007b)). The leak rate can be chosen empirically or alterna-
tively by a parameter search over a set of leak rates (parameter optimization).
In this work, some experiments use 3 pools of neurons in the reservoir with dis-
tinct leak rates to achieve better performance. The method used for choosing
the leak rate(s) is presented in the following sections depending on the con-
sidered task. Further investigation about timescales in reservoirs and leaky

4

integrator neurons can be found in (Schrauwen et al., 2007; Jaeger et al.,
2007).

Each element of the connection matrix Wres
res is drawn from a normal distribu-

tion with mean 0 and variance 1. The randomly created Wres
res matrix is rescaled

such that the system is stable and the reservoir has the echo state property
(i.e., it has a fading memory (Jaeger, 2001b)). This can be accomplished by
rescaling the matrix so that the spectral radius |λmax| (the largest absolute
eigenvalue) of the linearized system is smaller than one (Jaeger, 2001b). Stan-
dard settings of |λmax| lie in a range between 0.7 and 0.98 (Jaeger, 2002). In
this work we scale all reservoirs to a spectral radius of |λmax| = 0.9 which is an
arbitrarily chosen value (the optimization of the spectral radius for each ex-
periment was not necessary because the changes in performance resulting from
using distinct spectral radius in the range [0.7,0.98] are not clearly visible).

Training is performed using either linear regression (least squares method) or
ridge regression (Bishop, 2006). In the latter, the regularization parameter is
found by grid search on a validation set. The computational efforts for training
are related to computing the transpose of a matrix and matrix inversion. It
takes just a few seconds to train a RC network for the experiments in this work
on an Intel Core2 Duo processor-based system. Once trained, the resulting RC-
based system can be used for real-time operation on moderate hardware since
the computations are very fast (only matrix multiplications of small matrices).

For the supervised training of Wout
res , we use fisher labeling (Duda et al., 2001)

to get enhanced classification performance. Let Ŷ be a matrix containing the
desired outputs where each line represents one output (+1 and −1) over time.
As the number of positive desired outputs might be different from the number
of negative desired outputs in each line, each element ŷi(t) of the i-th line ŷi

of Ŷ is rescaled so that the whole line ŷi sums up to 0:

ŷi
fish(t) =

ni

+
+ni

−

ni

+

if ŷi(t) > 0

−
ni

+
+ni

−

ni

−

if ŷi(t) < 0
, (5)

where ni
+ = |{ŷi(t)|ŷi(t) > 0}| and ni

−
= |{ŷi(t)|ŷi(t) < 0}| denote the number

of positive and negative required outputs in the i-th line of Ŷ, respectively.

In the rest of this paper, we consider the following notations:

5

ni : number of inputs

nr : number of neurons in the reservoir

no : number of outputs

dt : downsampling rate of the dataset

nf : number of folds used in the cross-validation

α1, α2, α3: leak rates for each neural pool in the reservoir

3 Robot Models

We use two robot models in the following experiments. Their respective simu-
lation environments generate the data necessary for training the RC networks.
The first model is part of the 2D SINAR simulator (Antonelo et al., 2006) and
is described next. The environment of the robot is composed of several ob-
jects, each one of a particular color. Obstacles are represented by blue objects
whereas targets are given by yellow objects. The robot model is shown in
Fig. 2(a) . The robot interacts with the environment by distance and color
sensors; and by one actuator which controls the movement direction (turn-
ing). Seventeen (17) sensor positions are distributed uniformly over the front
of the robot (from -90◦ to +90◦). Each position holds two virtual sensors (for
distance and color perception) (Antonelo et al., 2006). The distance sensors
are limited in range (i.e., they saturate for distances greater than 300 distance
units (d.u.)) and are noisy (they exhibit Gaussian noise on their readings,
generated from N(0, 60) in d.u.). A value of 0 means near some object and a
value of 1 means far or nothing detected. At each iteration the robot is able
to execute a direction adjustment to the left or to the right in the range [0,
15] degrees and the speed is constant (0.28 distance units (d.u.)/s).

The second model is the e-puck robot model (e-puck, 2007). We use the Webots
simulation environment (Michel, 2004) for data generation which provides a
physics model of the e-puck robot (the simulator detects collisions and simu-
lates physical properties of objects, such as the mass, the velocity, the inertia,
the friction, the spring and damping constants, etc.). The model is shown in
Fig. 2(b). It has a 7 cm diameter. The e-puck is equipped with 8 infra-red
sensors which measure ambient light and proximity of obstacles in a range of
4 cm originally. However, we change this range value in the simulator to 5
cm (for event detection experiments) and 15 cm (for robot localization experi-
ments) in order to provide sufficient rich data for learning the respective tasks.
When one considers real world experiments, these longer range sensors could
be achieved by adding cheap infra-red range sensors to the real e-puck robot
via an extension module. The actuators of the robot are 2 stepper motors and

6

Table 1
Robot models

SINAR model e-puck model

No. Dist. Sensors 17 8

Range of Dist. Sens. 300 d.u. 5 cm or 15 cm

Noise on sensors N(0,60 d.u.) 30%

Speed 0.28 d.u. 3 cm/s, 1.25 cm/s or 0.63 cm/s

Physics model no yes

we limit its velocity to [0.6, 3] cm/s.

A comparison between both robot models is shown in Table 1. The robots from
both models explore their environments according to specific controllers. The
controller for the SINAR model (based on (Antonelo et al., 2006)) is a reactive
system made of hierarchical neural networks which learn by interaction with
the environment. Only already trained robot controllers, which all show very
good exploratory behavior after training, are used for generating data. The
controller for the e-puck model is made of a simple algorithm which follows
predefined points from a trajectory in the environment. The e-puck robot
speed for the event detection task is set to either 0.63 cm/s or 1.25 cm/s
depending on the proximity of obstacles (it can be 3 cm/s, 1.25 cm/s or 0.63
cm/s for the localization task).

The data from distance sensors and actuators collected from the robot simu-
lator are used to train and test RC networks in a Matlab environment using
the RCT Toolbox 4 (Verstraeten et al., 2007).

4 Event Detection for Mobile Robots

Event detection in noisy environments is not a trivial task. There can be very
similar scenes from the robot’s perspective so that precise event detection be-
comes very difficult to accomplish (Jaeger, 2001b). The goal here is to achieve
efficient event detection using reservoir computing. The detection of events
from raw sensory data is much related to the so called symbol grounding
problem (or anchoring) in robotics (Harnad, 2003). Several applications are
appealing in this context once deliberative robotic systems can benefit in sev-
eral ways from efficient meaning extraction from sensory data (Harnad, 2001;
Vogt, 2001; Rosenstein and Cohen, 1999).

4 This is an open-source Matlab toolbox for Reservoir Computing which is freely
available at http://www.elis.ugent.be/rct

7

Examples of event detection in mobile robot navigation include the detection
of new objects in an environment, recognition of momentaneous situations
such as: passing through door A, entering room B, cyclic robot trajectories,
etc. The task could also be defined in a more complex way such as the detection
of a sequence of events (e.g., enter and exits room B through the same door).

Two experiments are conducted for the event detection task. The environments
used for SINAR and e-puck are shown in Fig. 3(b) and Fig. 3(c), respectively.
The first environment is composed of a large (blue) corridor with a (yellow)
target at each end (they appear as dark and light gray objects in black and
white format). During simulation, the robot keeps navigating through the
corridor and capturing the targets (that are sequentially put back in the same
location). A blinking object located in the middle of the corridor (with random
blink interval) can force the robot to change direction by blocking its way. In
the second environment, the e-puck robot follows a predefined trajectory which
continually visits the entire environment. Its trajectory can be changed when
it reaches the middle of the environment (dotted line in Fig. 3(c)) with a
probability of 50%.

There are four possible events of predefined duration and location, which are
labeled in Fig. 3(a). The interpretation should be: when the robot passes
through a predefined location with a specific heading, an event should be
detected (e.g. entering the corridor corner area, passing through the middle of
the corridor).

Experiment 1 is accomplished considering the SINAR environment E1 and
experiment 2 takes place in the e-puck environment P1. Experiments 1 and 2
have 126.000 and 120.000 timesteps of simulation time, respectively. Parameter
configuration for both experiments are shown in Table 2.

In order to match the dynamics of the sensory input to the temporal dynamics
of the reservoir, we make use of both data downsampling (dt) and leak rate (α)
in the reservoir. Although resampling and leak rate are considered equivalent
(Schrauwen et al., 2007), it seems that the combination of both methods yields
superior performance (as it will be shown in the results) by more finely adjust-
ing the temporal dynamics of the reservoir to the input signal’s dynamics. The
value of the parameters dt and α was optimized by performing a grid search
(the combination of parameters with highest test performance was chosen).

The inputs to the network for the SINAR model are 17 distance sensors and
1 robot actuator (direction adjustment) while for the e-puck model the inputs
are composed of 8 sensors and 2 motor actuators. The reservoir size is 800
neurons for all experiments in this work, although smaller reservoirs (e.g., 200
or 400 nodes) can already perform very good. The readout layer has 4 output
units (one for each event detector) which are postprocessed by a winner-take-

8

Table 2
Parameter configuration for event detection

Model ni no dt α nr nf Wres
inp Training

SINAR 18 4 20 0.6 800 7 {±0.2, 0} Ridge regression

e-puck 10 4 15 0.8 800 8 {±0.2, 0} Ridge regression

all function. This function sets the output of the most activated neuron to 1
whereas the others are set to −1. Note that if all the readout units output a
negative value, then the winner-take-all function sets every output to −1 (this
means no event is detected). The connection matrix from input to the reservoir
(Wres

inp) is initialized to -0.2, 0.2 and 0 with probabilities 0.15, 0.15 and 0.7,
respectively. This parameter setting for weight matrices are not critical for the
tasks in this work.

The performance measure considers the number of correctly predicted observa-
tions and uses a 7-fold (8-fold) cross-validation method for the SINAR model
(e-puck). It is important to note that if the dataset is resampled, then the out-
put of the network is upsampled to the original sampling rate of the dataset so
that the performance is correctly calculated (differently from (Antonelo et al.,
2007b)). Additionally we also calculate the percentage of correctly detected
events for each of the 4 possible events separately.

The results are shown in Fig. 4. For both robot models, a RC network per-
forms very good by achieving 95.4% and 93.1% of classification performance
on test data. Although the events in the run are not periodic, the 4 classes
of events are correctly detected during all the simulation, with few mispredic-
tions. Most of the errors are explained by the temporal resolution of the RC-
based detector, that is, the reservoir is sometimes not accurate enough in the
very beginning/end of an event (i.e., in the temporal boundary of events). This
problem has to do with the downsampling of the input signal (for matching
the reservoir dynamics) which is upsampled for performance measure. So, part
of the temporal resolution is lost in this process of downsampling/upsampling.
First investigations on reservoirs using only leak rate (without resampling the
input) yield equivalent temporal resolution, showing that it is difficult to get
perfect temporal resolution.

In Fig. 5, we can see how the downsampling rate of the dataset (dt) and reser-
voir size influence the test performance on the event detection task using the
e-puck robot model. If a dataset is downsampled by dt = 10, for instance, the
resulting dataset will be 1/10 smaller than the original one, effectively slowing
down the input signal. Fig. 5 shows that a downsampling of 15 timesteps is
the optimal choice. It is possible to observe that when dt is bigger than 30
timesteps, as the downsampling rate increases the performance deteriorates.
The figure also shows that bigger reservoirs (with more neurons) have more

9

Table 3
Results for event detection

Model Timesteps Train Perf. Test Perf. Perf. Events 1, 2, 3 and 4 resp.

SINAR 126 K 94.7 % 93.2 % 95.5% 95.6% 100% 99.6%

e-puck 120 K 93.2 % 92.3 % 86.9% 97.2% 96.7% 82.6%

memory (while require less resampling), thus increasing performance.

Statistics on experiments 1 and 2 are given in Table 3. Each experiment is
evaluated 30 times with different stochastically generated reservoirs and the
results are averaged over these 30 runs. The table shows that the results are
consistent, with 93.2% and 92.3% of performance on test data for SINAR and
e-puck models, respectively. Despite events 2 and 3 can be considered sym-
metric, they show distinct performances (respectively, 95.6% and 100%). The
reason for different performances may be caused by two factors: one is that the
reactive controller which steers the robot may generate different trajectories
and thereby distinct streams of sensor activations right before events 2 and 3;
another factor is that event 2 may have appeared in the test sequence more
times than event 1, thus increasing the chance that event 2 is mispredicted.
One can also note that the performance for the e-puck model for events 1 and
4 are worse than the performance for events 2 and 3. This is probably due to
the robot controller which present different velocities during the navigation
(low speed close to events 1 and 4 and high speed near events 2 and 3).

5 Robot Localization

The previous section has shown that an RC network can be used to detect
complex events in robot navigation with good performance. Now this section
extends the experiments to robot localization. Instead of only detecting events,
we want to predict the current location of the robot based on the same kind of
sensory information (giving rise to a more difficult and interesting problem).

Localization (or position detection) for mobile robots is usually computation-
ally expensive in terms of space and time requirements (Bailey and Durrant-
Whyte, 2006). Traditional algorithms are based on explicit maps of the en-
vironment which must be constructed before robot localization is possible.
This section shows how a reservoir can be used for robot localization. Similar
work which uses a Long-Short Term Memory RNN for this task is described in
(Forster et al., 2007). Whereas in our previous work (Antonelo et al., 2007a),
RC networks are used for prediction of continuous robot coordinates and head-
ing (x, y, θ), this work presents a broader perspective for the robot localization
problem by extending it to more abstract (discrete) concepts such as locations

10

and rooms (in (Forster et al., 2007), only rooms are considered).

The proposed localization system is built upon the learning of an implicit map
of the environment by a RC network. The output layer of the RC network (see
Fig. 1), represented by the column vector y(t) in (4), creates a spatial represen-
tation of the environment which is comparable to the representation provided
by the place cells found in the hippocampus of rats (areas CA1 and CA3,
(O’Keefe and Dostrovsky, 1971)). These place cells increase activity whenever
the rat (robot) is in a specific region of its environment (which defines the
place field of the cell). The vector y(t) results from a linear combination of
a temporally processed input vector of distance measurements. In this work,
we consider allothetic (visual) signals as input to the system (that is, external
sensory input given by distances sensors) as well as idiothetic input in the
form of actuator feedback. However, the proposed system acquires the same
localization properties and presents similar performances for the following ex-
periments whether this actuator feedback is used or not. We do not model
dead reckoning (path integration) in this work.

The parameter configuration used for the following experiments is shown in
Table 4. The inputs to the network for the SINAR model are 17 distance
sensors and 1 robot actuator (direction adjustment) while for the e-puck model
the inputs are composed of 8 sensors and 2 motor actuators. The size of the
readout output layer (no) is equivalent to the number of predefined locations
in the environment. The postprocessing function for the readout units is the
winner-take-all function which always takes the most activated neuron and sets
it to 1 (the others are set to −1). So, there is always a predicted location (in
contrast to the no event detected situation in previous section). The connection
matrix from input to the reservoir (Wres

inp) is initialized to -0.1, 0.1 and 0 for
SINAR model (-0.9, 0.9 and 0 for e-puck) with probabilities 0.15, 0.15 and 0.7,
respectively. The resampling rate (dt) and leak rate (α1) were optimized by
performing a grid search for the SINAR model (as in previous section). The
experiments with the e-puck consider 3 neural pools in the reservoir, each with
distinct leak rates (α1, α2, α3). This feature makes the reservoir work in several
timescales, thus, making it more efficient when the task considers a robot with
a varying speed (in our case, the robot can have 3 different velocities). The
resampling rate and the three leak rates were empirically chosen to yield the
best performance for the e-puck robot model.

The first investigations were made with the SINAR model. Two maze-like en-
vironments are used for the robot localization task (see Fig. 6). The first envi-
ronment contains 64 predefined locations, that are displayed by small triangles
labeled by numbers. The second environment has 29 locations distributed in
a symmetric map.

Experiment 3 is accomplished with the first environment from Fig. 6 and lasts

11

Table 4
Parameter configuration for localization

Model ni no dt α1 α2 α3 nr nf Wres
inp Training

SINAR 18 {64,29} 50 0.6 – – 800 3 {±0.1, 0} Least Sq.

e-puckloc 10 30 10 0.05 0.8 1 800 7 {±0.9, 0} Rid.regr.

e-puckroom 10 4 20 0.05 0.8 1 800 5 {±0.9, 0} Rid.regr.

180.000 timesteps. The resulting robot occupancy grid can be seen in Fig. 7(a):
it shows that the reservoir is predicting the robot location very well (the per-
formance is 91.6% on test data), with very few mispredictions. Experiment
4 uses the same environment E2 with 11 additional slow moving obstacles
distributed throughout the environment. These dynamic objects change the
robot’s behavior and also add more noise to sensor readings. The simulation
has 180.000 timesteps. The respective occupancy grid in Fig. 7(b) shows that
the reservoir is correct in most of the predictions (81.1 %). Some of the mis-
predictions are located a bit further from the actual position, due to the new
source of dynamics and noise, although they generally tend to be very short.
For comparison, the RNN-based room detector in (Forster et al., 2007) which
has 36 inputs coming from a laser range scanner presents test performance of
81.8% (for non-noisy environment) and 82.8% (with 10 slow moving obstacles)
of correctly predictions for a simulated house environment of 15 rooms.

Experiment 5, accomplished in environment E3 (Fig. 6(b)), represents a new
challenge for the reservoir-based position detector: the environment has several
symmetries and identical areas. For instance, going from position 27 to 26
looks identical to the robot as going from position 22 to 24. The simulation
has 150.000 timesteps. The resulting occupancy grid in Fig. 7 shows an efficient
position detector, featuring a performance of 89.1 % of correct predictions on
test data.

The following experiments are done with the e-puck robot model. The envi-
ronment used is shown in Fig 8(a). It is composed of 4 big rooms with doors
connecting them. Fig 8(b) shows 30 points distributed in the map which are
connected by lines representing possible robot paths between them. When the
robot reaches a point which can lead to 2 other possible points, the robot
controller decides to choose one of the points with equal probabilities. In this
way, the robot may stay in room 3 for varying periods of time in the same
run, for instance. The localization task is to detect which one of the 30 points
the robot is most close to. The room detection task uses the map in Fig 8(c)
which shows the boundaries dividing the 4 rooms to be detected.

The parameter configuration for both location and room detection is shown in
Table 4. The results in Fig. 9 show that the performance is much higher when
the reservoir has 3 neural pools with distinct leak rates. Several mispredictions

12

Table 5
Results for location detection

Model (Env) Leak Timesteps Train Perf. Test Perf. Std Test

SINAR (E2) no 180 K 94.0 % 89.2 % 0.4%

SINAR (E2) yes(1) 180 K 94.3 % 90.7 % 0.1%

SINAR (E3) no 150 K 94.4 % 88.6 % 0.3%

SINAR (E3) yes(1) 150 K 94.4 % 89.1 % 0.3%

SINAR (E2mov) no 180 K 93.0 % 76.0 % 0.7%

SINAR (E2mov) yes(1) 180 K 94.2 % 79.1 % 0.5%

e-puck no 40 K 87.2 % 78.9 % 0.4%

e-puck yes(3) 40 K 90.4 % 85.1 % 0.5%

present in Fig. 9(a) are removed by the new setup in Fig. 9(b). In this case,
the increase in performance is of at least 6% of correct classification when
compared to the experiment with a normal reservoir (without multiple leak
rates).

A summary of the localization experiments with associated results are shown
in Table 5. This table presents additional results from experiments considering
only dataset resampling (without the use of leak rates) so that we can reli-
ably draw conclusions. Each experiment is evaluated 30 times with different
stochastically generated reservoirs and the results are averaged over these 30
runs. We can observe that the use of leak rates yields the greatest increases
in performance for the experiments with the SINAR model in environment
E2mov(with moving obstacles) and with the e-puck robot (in this case, 3 neu-
ral pools of distinct leak rates).

Room detection can also be achieved in a similar way. The results are shown
in Fig. 10 using the configuration from Table 4. The RC-based room detector
is very efficient during more than 7000 timesteps: it shows a performance
of 93.6% on test data. There are few mispredictions, and most of them are
located in the temporal boundaries between one room and the next one, which
is a result from the downsampling/upsampling artifact. Table 6 shows the
statistics for the room detection task. Each one of the rooms is correctly
detected by a rate of at least 91%. For comparison, the RNN-based room
detector from (Forster et al., 2007) presents performance of around 80% of
correctly predictions (considering 35 inputs from a laser range scanner and 15
rooms in the environment).

Experiments only considering distance sensors (removing actuator feedback)
result in similar performance reported for the previous experiments in this
section. The reservoir network also copes with the kidnapping situation (also

13

Table 6
Results for room detection

Model Timesteps Train Perf. Test Perf. Perf. Rooms 1, 2, 3 and 4 resp.

e-puck 39 K 97.2 % 93.1 % 95.4% 91.5% 91.8% 93.1%

reported in (Forster et al., 2007)). In a new experiment using environment
E2, the robot is kidnapped from location 34 to location 20 (see Fig. 11(a)).
The network is able to successfully predict the robot position when the robot
reaches location 16. Another example is given in Fig. 11(b), where the robot is
kidnapped from location 41 to location 46. In this case, since locations 41 and
46 are symmetrically similar, the RC network can be misled for a longer time.
Note that the predicted locations following the kidnapping are the locations
next to 41, as if the robot kept the original path (42, 43 and so on). After
some timesteps, the reservoir realizes it is actually in location 50, given the
history of sensory inputs since the kidnapping. Note that the RC network
is not trained for the kidnapping event. The performance of the kidnapping
situation in this work is apparently similar to the work in (Forster et al.,
2007): both can predict the correct location (room in their work) after some
timesteps (despite the different robot model and environment used in (Forster
et al., 2007); for instance, they use 36 inputs while the e-puck robot uses 8
distance sensors).

6 Discussions

In this work we show that it is possible to detect complex events and perform
robot localization in complex and even dynamic environments using a fixed,
randomly created dynamic system which is processed by a trained linear read-
out layer. Only a limited number of noisy and low range sensors are needed for
building successful RC-based detectors. The proposed system shows very good
performance in difficult environments such as mazes or environments which are
highly symmetric. The detection of events and locations is achieved through
a linear classification of the temporal dynamics existing in the fixed dynamic
system which in turn is completely determined by the anterior stream of the
sensory inputs. Thus, it is the short-term memory capabilities of the random
reservoir and its non-linear projections which allow the system to perform effi-
cient event detection and localization. The actual behaviors driving the robot
were not used as inputs to the system (as in (Hertzberg et al., 2002)), but only
low-level motor commands (only distance sensory inputs are sufficient for the
tasks however).

When a RC-based system learns to perform robot localization, an implicit
map is formed by the reservoir’s dynamics in combination with the trained

14

readout. This might seem hard to grasp, but in (Antonelo et al., 2007a) we
showed that we can run a trained RC-based localization system backwards,
and create an explicit representation of the map that is implicitly stored in
the reservoir. The inputs of the reverse system are locations, and the output
are predicted sensor range measurements. In this way, we can reconstruct the
map of the environment by driving the robot through different locations and
recording what the reservoir has in mind at the respective moment.

We show that event detection and localization works on a physically realistic
simulated robot model. As future work, we plan to implement both techniques
on the real robotic platform, as it is considered the standard and best evalu-
ation method for robotic systems. Furthermore, a deliberative robotic system
can now be constructed so that actual path planning and navigation is ac-
complished based on the information gathered by the RC-based localization
system (e.g. information about events, locations and rooms).

The importance of timescales in reservoir systems was clearly demonstrated
in this work, especially when the robot’s speed is not constant. From a RC
perspective, we could further improve the performance, for example, by using
a so called band-pass reservoir (Wyffels et al., 2008). This idea consists of
adding band-pass filters to a single reservoir so that it can capture a wide
range of timescales. This setup could greatly improve the performances on
tasks which consider a wide range of robot speeds.

The current setup is trained in a completely supervised way. This is not re-
alistic from the perspective of intelligent autonomous systems which seeks
inspirations from biological systems. Future work includes the design of un-
supervised learning algorithms for acquiring new locations incrementally and
autonomously (i.e., as the robot navigates in its environment), resembling
with more realism the place cells in the rat’s hippocampus. Additionally, the
current technique can be combined with approximate dead reckoning and on-
line learning of novel locations to form a truly unsupervised localization and
mapping system for mobile robots.

Acknowledgments

This research is partially funded by FWO Flanders project G.0317.05.
We would like to thank the anonymous reviewers for their fruitful and critical
suggestions. We also thank Karel Braeckman for helping us to generate the
e-puck datasets from the Webots simulation environment.

15

References

Antonelo, E. A., Baerlvedt, A.-J., Rognvaldsson, T., and Figueiredo, M.
(2006). Modular neural network and classical reinforcement learning for
autonomous robot navigation: Inhibiting undesirable behaviors. In Proc.
Int. Joint Conf. on Neural Networks (IJCNN), pages 498– 505, Vancouver.

Antonelo, E. A., Schrauwen, B., and Campenhout, J. V. (2007a). Genera-
tive modeling of autonomous robots and their environments using reservoir
computing. Neural Processing Letters, 26(3):233–249.

Antonelo, E. A., Schrauwen, B., Dutoit, X., Stroobandt, D., and Nuttin, M.
(2007b). Event detection and localization in mobile robot navigation using
reservoir computing. In de Sa et al., J. M., editor, ICANN, Part II, pages
660–669. Springer-Verlag.

Arkin, R. (1998). Behavior-based robotics. MIT Press.
Arleo, A., Smeraldi, F., and Gerstner, W. (2004). Cognitive navigation based

on nonuniform gabor space sampling, unsupervised growing networks, and
reinforcement learning. IEEE Transactions on Neural Networks, 15(3):639–
652.

Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localisation and map-
ping (SLAM): Part II. Robotics and Automation Magazine, September:108–
117.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification -
Second Edition. John Wiley and Sons, Inc.

e-puck (2007). http://www.e-puck.org/. e-puck education robot.
Forster, A., Graves, A., and Schmidhuber, J. (2007). RNN-based learning of

compact maps for efficient robot localization. In Proceedings of ESANN.
Franzius, M., Sprekeler, H., and Wiskott, L. (2007). Slowness and sparseness

lead to place, head-direction, and spatial-view cells. PLoS Computational
Biology, 3(8):1605–1622.

Guivant, J., Nebot, E., and Baiker, S. (2000). Autonomous navigation and
map building using laser range sensors in outdoor applications. Journal of
Robotics Systems, 17(10):565–583.

Harnad, S. (2001). Grounding symbols in the analog world with neural nets
a hybrid model. Psychology, 12:12–78.

Harnad, S. (2003). The symbol grounding problem. In Encyclopedia of Cog-
nitive Science. London: Nature Publishing Group/Macmillan.

Hertzberg, J., Jaeger, H., and Schönherr, F. (2002). Learning to ground fact
symbols in behavior-based robots. In Proceedings of the 15th European
Conference on Artificial Intelligence, pages 708–712.

Jaeger, H. (2001a). The “echo state” approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148, German
National Research Center for Information Technology.

Jaeger, H. (2001b). Short term memory in echo state networks. Technical Re-

16

port GMD Report 152, German National Research Center for Information
Technology.

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering
BPTT, RTRL, EKF and the “echo state network” approach. Technical Re-
port GMD Report 159, German National Research Center for Information
Technology.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication. Science, 308:78–
80.

Jaeger, H., Lukosevicius, M., and Popovici, D. (2007). Optimization and ap-
plications of echo state networks with leaky integrator neurons. Neural
Networks, 20:335–352.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing
without stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11):2531–2560.

Michel, O. (2004). Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42.

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat. Brain
Research, 34:171–175.

Rosenstein, M. and Cohen, P. R. (1999). Concepts from time series. In Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence, pages
739–745.

Schönherr, K., Cistelecan, M., Hertzberg, J., and Christaller, T. (2001).
Extracting situation facts from activation value histories in behavior-
based robots. In KI-2001: Advances in Artificial Intelligence (Joint Ger-
man/Austrian Conference on AI, Proceedings),, page 305319. Springer
(LNAI 2174).

Schrauwen, B., Defour, J., Verstraeten, D., and Van Campenhout, J. (2007).
The introduction of time-scales in reservoir computing, applied to iso-
lated digits recognition. In Proc. Int. Conf. on Artificial Neural Networks
(ICANN).

Steil, J. J. (2004). Backpropagation-Decorrelation: Online recurrent learn-
ing with O(N) complexity. In Proc. Int. Joint Conf. on Neural Networks
(IJCNN), volume 1, pages 843–848.

Stroesslin, T., Sheynikhovich, D., Chavarriaga, R., and Gerstner, W. (2005).
Robust self-localisation and navigation based on hippocampal place cells.
Neural Networks, 18(9):1125–1140.

Verstraeten, D., Schrauwen, B., D’Haene, M., and Stroobandt, D. (2007). A
unifying comparison of reservoir computing methods. Neural Networks,
20:391–403.

Vogt, P. (2001). Symbol grounding in communicative mobile robots. In
Coradeschi, S. and Saffiotti, A., editors, Anchoring Symbols to Sensor Data
in Single and Multiple Robot Systems: Papers from the 2001 AAAI Fall
Symposium, pages 87–94. AAAI Press.

17

Wyffels, F., Schrauwen, B., Verstraeten, D., and Stroobandt, D. (2008). Band-
pass reservoir computing. In Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN).

18

Fig. 1. Reservoir Computing network. The reservoir is a dynamical system of recur-
rent nodes. Solid lines represent connections which are fixed. Dashed lines are the
connections which can be trained.

Fig. 2. Robot models used in the experiments. (a): robot model from SINAR simu-
lator. (b): e-puck robot model.

19

(a) Definition of the 4 events (b) SINAR environment E1

(c) e-puck environment P1

Fig. 3. Environments used for the event detection task. (a) Four events are labeled
and shown graphically (by arrows). (b) SINAR environment with a blinking obstacle
in the middle of the corridor, indicated by an arrow. A typical robot trajectory (after
controller learning) can be seen in the figure. Two boxes in the environment are used
as targets for the robot. (c) e-puck simulation environment (the 4 events are defined
similarly). The dotted line represents a decision point which makes the robot cross
the line or go back with equal probabilities.

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

1

2

3

4

Timestep (x 103)

E
ve

nt

(a) Event detection using SINAR model

0 1 2 3 4 5

0

1

2

3

4

Timestep (x 103)

E
ve

nt

(b) Event detection using e-puck model

Fig. 4. Event detection performed by RC network. The gray solid line represents
the actual event whereas the black points are the predicted events. Mispredictions
are marked with circles. (a) Using SINAR simulation model (performance of 95.4 %
on this test data) (b) Event detection using e-puck simulation model (performance
of 93.1 % on this test data).

5 10 15 20 30 50 60100
10

50
100

200
400

800

0

0.5

1

Reservoir
 SizeResampling Rate

T
es

t P
er

fo
rm

an
ce

Fig. 5. Resampling rate and reservoir size vs. test performance. Each point of the
plot is the mean performance (correct classifications) over 30 runs for the event
detection task using the e-puck robot model.

21

(a) SINAR Environment E2

(b) SINAR Environment E3

Fig. 6. Environments used for the experiments. The first environment is tagged
with 64 labels displayed by small triangles. The second environment has 29 labels
distributed through very similar areas.

22

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

Timestep (x 103)

Lo
ca

tio
n

(a) Location Detection (E2)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

Timestep (x 103)

Lo
ca

tio
n

(b) Location Detection (E2 with 11 moving obstacles)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

Timestep (x 103)

Lo
ca

tio
n

(c) Location Detection (E3)

Fig. 7. Robot occupancy grids showing the predicted location (on test data, that is
1/3 of the total data) and the actual robot positions (solid gray line). Mispredicted
locations are represented by a circle. (a) Experiment in environment E2 (test per-
formance of 91.6% of correct detection). (b) Experiment in environment E2 with 11
slow moving obstacles (test performance of 81.1% of correct detection). (c) Experi-
ment in environment E3 (test performance of 89.1% of correct detection).

23

(a) Environment for e-puck (P2)

(b) Map for Location detection (c) Map for Room detection

Fig. 8. Environment used for localization experiments with the e-puck robot model.
(a) the e-puck in its 3D environment. (b) the map of the environment with 30
locations to be detected. Each location is represented by a point and labeled with
numbers. The points are connected by lines which represent possible paths between
locations. (c) the map of the environment showing the 4 rooms to be detected and
the same robot exploring trajectory.

24

0 1000 2000 3000 4000 5000
0

10

20

30

Timestep

Lo
ca

tio
n

(a) No leak rate considered

0 1000 2000 3000 4000 5000
0

10

20

30

Timestep

Lo
ca

tio
n

(b) 3 neural pools of distinct leak rates

Fig. 9. Location detection performed by a RC network (e-puck). (a) A normal
reservoir gives a performance of 77.7 % on test data (b): A reservoir containing 3
neural pools of distinct leak rates yields a performance of 84 % (test data). The gray
solid line represents the actual location whereas the black points are the predicted
location. Mispredictions are marked with circles.

0 1 2 3 4 5 6 7

1

2

3

4

Timestep (x 103)

R
oo

m

Fig. 10. Room detection performed by a RC network (e-puck). The points in the
plot (rooms) are correctly detected with a rate of 93.6 % (test data). The gray solid
line represents the actual room whereas the black points are the predicted room.
Mispredictions are marked with circles.

25

9 9.5 10 10.5 11
10

15

20

25

30

35

40

Timestep (x 103)

Lo
ca

tio
n

32

17 16

34 33

37

(a)

18 18.5 19 19.5 20
38

40

42

44

46

48

50

Timestep (x 103)

Lo
ca

tio
n

42
43

44
45

41

50

(b)

Fig. 11. Occupancy grid after kidnapping the robot in environment E2 of Fig. 6. The
solid gray line represents the actual robot position. Correct predictions are given
by black points while wrong predictions are marked with circles. The predictions of
the RC network are labeled with numbers after the robot is kidnapped. (a) At time
step 9551, the robot is moved from position 34 to position 20. The reservoir network
predicts successfully the current robot position when the robot is in location 16. The
robot visits 2 locations (20 and 17) until the successful prediction. (b) At time step
18730, the robot is moved from position 41 to position 46. The reservoir network
predicts successfully the current robot position when the robot is in location 50.
The robot visits 4 locations (47, 48 and 49) until the successfull prediction.

26

