
Generative Adversarial Imitation Learning for
End-to-End Autonomous Driving on Urban

Environments
Gustavo Claudio Karl Couto

Automation and Systems Engineering Department
Federal University of Santa Catarina

Florianopolis, Brazil
gustavo.karl.couto@posgrad.ufsc.br

Eric Aislan Antonelo
Automation and Systems Engineering Department

Federal University of Santa Catarina
Florianopolis, Brazil
eric.antonelo@ufsc.br

Abstract—Autonomous driving is a complex task, which has
been tackled since the first self-driving car ALVINN in 1989,
with a supervised learning approach, or behavioral cloning (BC).
In BC, a neural network is trained with state-action pairs that
constitute the training set made by an expert, i.e., a human
driver. However, this type of imitation learning does not take
into account the temporal dependencies that might exist between
actions taken in different moments of a navigation trajectory.
These type of tasks are better handled by reinforcement learning
(RL) algorithms, which need to define a reward function. On the
other hand, more recent approaches to imitation learning, such
as Generative Adversarial Imitation Learning (GAIL), can train
policies without explicitly requiring to define a reward function,
allowing an agent to learn by trial and error directly on a training
set of expert trajectories. In this work, we propose two variations
of GAIL for autonomous navigation of a vehicle in the realistic
CARLA simulation environment for urban scenarios. Both of
them use the same network architecture, which process high-
dimensional image input from three frontal cameras, and other
nine continuous inputs representing the velocity, the next point
from the sparse trajectory and a high-level driving command.
We show that both of them are capable of imitating the expert
trajectory from start to end after training ends, but the GAIL
loss function that is augmented with BC outperforms the former
in terms of convergence time and training stability.

Index Terms—autonomous driving, generative adversarial im-
itation learning, CARLA simulator, behavior cloning

I. INTRODUCTION

Imitation learning is an approach whereby a model is
created to imitate an expert by training on a fixed set of
observation-action samples (or trajectories) obtained from that
expert. This happens without the possiblity of querying the
expert while training. Behavioral cloning (BC) [1]–[3] is one
approach for imitation learning that relies on supervised learn-
ing to learn a mapping between observations and actions. It has
been used for autonomous navigation since 1989, starting with
the self-driving car ALVINN [1] that relied on camera images
as input to a neural network (NN) to drive the car. BC has the
issue of sample complexity since it requires a lot of training
data (observation-action samples) generated by experts (e.g.
human drivers) to work well in practice. However, BC will
always suffer from cascading errors and covariate shift [4]

since their models are trained only on a subset of the necessary
samples (observation-action pairs) for safe, robust driving: as
soon as the self-driving car encounters a new road and starts
shifting slightly towards the left or right side of the lane, it
will feedback its mistake through new observations fed to the
NN, which in turn will shift even more the car until no valid
action can be taken anymore.

On the other hand, policies learned by Reinforcement Learn-
ing (RL) solve the issue of cascading error since they learn
from information of whole sample trajectories and not just
isolated observation-action samples as in BC, but require a
reward (cost) function to be defined for finding the optimal
policy. In RL, training is an evolutionary method where
an agent learns by trial and error, i.e., interacting with the
environment, and receiving a reward signal indicating the
quality of the solution found.

In the context of imitation learning, RL can be used to
learn to imitate expert driving trajectories in a process called
inverse reinforcement learning (IRL) [5], [6]. IRL can be
used to find driving policies by: first finding a cost function
under which the expert, i.e., the set of training trajectories, is
uniquely optimal; and then using RL algorithms that optimize
the learned cost function. IRL is usually expensive to run since
it requires RL in an inner loop, and thus, has difficulties in
scaling to large environments. Recent work in IRL seeks to
deal with these issues [7], [8]. Still, learning a cost function in
IRL makes the problem more computationally expensive than
just learning a policy directly from the training trajectories.

One of the recently developed sample refiefficient ap-
proaches for imitation learning comes from Generative Ad-
versarial Imitation Learning (GAIL) framework [9], which can
actually generate policies directly from the expert trajectories
without having to learn any cost function as in IRL, and
is scalable to relatively large environments, such as the one
in autonomous driving. However, training in GAIL can be
unstable and difficult to achieve a satisfactory result depending
on the task. While it is sample efficient in terms of the required
number of expert trajectories, it is not so efficient in the
number of environment interactions needed for convergence.



On the other hand, BC converges in a few epochs, but
assumes that its dataset is composed of independent and
identically distributed samples. A recently developed approach
[10] combines both BC and GAIL losses into an integrated
loss function for stable and sample efficient imitation learning.
They have evaluated it on low-dimensional control tasks, and
also on the high-dimensional image-based task of CarRacing
from OpenAI Gym.

In our work, we propose a GAIL-based architecture for end-
to-end autonomous urban navigation, which is evaluated on
fixed trajectories in the realistic autonomous driving CARLA
simulator [11]. The agent receives a high-dimensional image
input from three frontal cameras, as well as other continuous
inputs such as velocity and next point of a sparse GPS tra-
jectory in the local vehicle’s frame of reference. As far as the
authors know, this is the first proposal of architectures based
on conventional GAIL and GAIL augmented with BC [10]
for end-to-end imitation learning in the CARLA simulator,
also considering a much higher observation space (in relation
to the simpler CarRacing environment, for instance). Our
experiments have shown that although the GAIL architecture
can learn to imitate the expert well, GAIL augmented with
BC has much faster convergence to the desired navigation
trajectory.

In Section II, we give a brief overview on some related
works. Next, we present the main methods such as GAIL and
GAIL augmented with BC as well as the agent architecture
in Section III. Section IV describes the experiments, datasets
and settings, while the results are presented in Section V.
Conclusions and future work are drawn in Section VI.

II. RELATED WORK

A. Behavior cloning

One of the most important recent works on imitation
learning for end-to-end autonomous driving on urban en-
vironments corresponds to a conditional imitation learning
algorithm implemented in [12]. Based on behavior cloning, the
learning is conditioned on a high-level command signal that
indicates the way through the trajectory to be followed by the
agent. The observation space consists of: images from three
frontal cameras installed on the vehicle; the vehicle speed if
available; and a high-level driving command. The action space
consists of the vehicle’s steering angle and acceleration. The
experiments are conducted both on CARLA and on a real
setting with an off-the-shelf 1/5 scale truck, which was adapted
with three frontal cameras and a single board computer for
autonomous driving.

Both experiments were successful and also generalized well,
making it a milestone for enabling an agent to learn to follow
generic trajectories, whereas most of previous works have
concentrated on fixed paths. The work has shown that CARLA
serves as an important platform to analyse agents and learning
approaches before deploying them to the real world.

B. Reinforcement learning

The Controllable Imitative Reinforcement Learning [13]
was proposed as a two-phase algorithm that pre-trains a policy
using behavior cloning and then refines it during interaction
with the environment using an engineered reward function to
enforce the best behavior of the agent. This reward signal is
composed by negative rewards for abnormal steer angles, dam-
age from collisions, going over the sidewalk or the opposite
lane, and by a positive reward for reaching a desired speed.

The observation space of the algorithm consists of an
image from a front-facing camera, the vehicle speed and four
options of high-level commands (”follow-lane”, ”turn left”,
”turn right”, ”go straight”). The image from the camera feeds
the convolution layers of the actor-critic network while the
speed is fed directly to the fully connected layers of the
network. The high-level command is used to select the final
branch of the network, that outputs the signals for the steering
wheel, throttle, and brake.

C. Apprenticeship Learning

In [14], a multi-stage learning approach is employed that
succeeded in the CARLA benchmark [15]. Their method is
based on the training of a teacher in a first stage using behavior
cloning, which has privileged information about the landscape
and other agents on its observation space in the CARLA
simulator. In the second stage, a vision-based agent is trained
without access to privileged information using apprenticeship
learning [16]. .

The observation space of the agent consists of a 384x184
RGB image from a front-facing camera and the vehicle veloc-
ity. The action space corresponds to K waypoints representing
the agent’s future locations on the next K states in the
agent reference. The waypoints are generated by network’s
four heads representing the following high-level commands
”follow-lane”, ”turn left”, ”turn right”, ”go straight”.

A low-level rule-based controller uses those waypoints
predicted by the network and the high-level command given to
the vehicle to generate the car attitude control (steer, throttle,
brake).

D. GAIL for autonomous driving

GAIL was first applied to autonomous driving in [17]. In
that work, a Wasserstein Gail is designed to control a vehicle
on TORCS [18], an open-source racing car simulator. The
observation space consists of images taken from the front of
the car, and some auxiliary information (the car velocity, the
last two actions, and the damage to the car). The action space
corresponds to a three-dimensional vector with the steering
command, acceleration, and brake.

Their method, called InfoGAIL, still augments the standard
GAIL with a replay buffer and a reward signal with constant
reward to encourage the agent to stay alive. The focus of
InfoGAIL is to demonstrate a capability to learn a policy that
can switch between driving behaviors by disentangling in an
unsupervised way the different modes of behavior present in



the expert’s demonstrations. Other related work can be found
in [19]–[21].

To our knowledge, this is the first time that GAIL or GAIL
augmented with BC are evaluated for an end-to-end self-
driving task in a highly realistic urban vehicle simulator as
CARLA.

III. METHODS

A. Generative Adversarial Imitation Learning

In Generative Adversarial Imitation Learning (GAIL) [9],
basically, there are two components that are trained iteratively
in a min-max game: a discriminative classifier D is trained to
distinguish between samples generated by the learning policy
� and samples generated by the expert policy �E (i.e., the
labelled training set); and the learning policy � is optimized
to imitate the expert policy �E . Thus, in this game, both D
and � have opposite interests: D feeds on state-action pair
(s; a) and its output seeks to detect whether (s; a) comes from
learning policy � or expert policy �E ; and � maps state s to a
probability distribution over actions a, learning this mapping
by relying on D’s judgements on state-action samples (i.e., D
informs how close � is from �E). Mathematically, GAIL finds
a saddle point (�;D) of the expression:

E
π

[log(D(s; a))] + E
πE

[log(1�D(s; a))]� �H(�) (1)

where D : S � A ! (0; 1), S is the state space, A is
the action space; �E is the expert policy; H(�) is a policy
regularizer controlled by � >= 0 [22]. GAIL works similarly
to generative adversarial nets (GANs) [23], which was first
used to learn generators of natural images. Both D and � can
be represented by deep neural networks. In practice, a training
iteration for D uses Adam gradient-based optimization [24] to
increase (1), and in the next iteration, � is trained with any on-
policy gradient method such as Proximal Policy Optimization
(PPO) [25] to decrease (1).

B. GAIL and BC augmentation

1) Wasserstein loss: Instead of the original loss function of
GAIL, as in (1), in this work, we employ its improved version
using the Wasserstein distance between the policy distribution
P�π and expert distribution P�E as loss function for training
the discriminator, as in [17], [26].

The Wasserstein distance measures the minimum effort to
move one distribution to the place of the other and gives a
better feedback signal than the Jensen-Shannon divergence.

The new loss function for the improved GAIL is:

E
πE

[D(s; a)]� E
π

[D(s; a)]� �H(�)� �2Lgp (2)

where the discriminator will try to increase (2), while �
seeks to minimize it; and Lgp is a loss that penalizes the
gradient constraining the discriminator network to the 1-
Lipschitz function space, according to [27].

2) BC augmentation: The behavior Cloning loss function
can be defined as:

� E
πE

[log(�(ajsj))] (3)

which is the negative expectation of the log probability for the
non deterministic policy generator to output the same actions
as the expert on the same states from the expert dataset.

The BC augmentation is constructed taking a point from a
line between the behavior cloning loss and the GAIL loss, as
defined on the following equation:

�Lbc + (1� �)LGAIL (4)

On equation (4), Lbc is the behavior cloning loss function
defined on (3) and Lgail is the GAIL loss function defined
defined on (2).

The � on (4) controls the participation of each term
during the training. By the start of the GAIL training, the
discriminator is yet not fully trained and the behavior cloning
participation should be stronger. For that, � should not be the
same during the entire training and its value decreases during
the training using a fixed decay factor. This definition and the
practical implementation follows [28].

C. Agent and Network architecture

1) Agent: The autonomous car has several sensors, from
which we consider: three frontal cameras (Fig. 1), an inertial
unit used to compute the vehicle linear speed and angular
position, and a GPS unit for global positioning.

Before training begins, the agent has access to the whole
trajectory it must perform, defined as a vector of sparse
points and high-level driving commands that characterize the
trajectory with no ambiguity. These driving commands can be
one from the following in this work:

� LANE FOLLOW: Continue in the current lane.
� LEFT: Turn left at the intersection.
� RIGHT: Turn right at the intersection.
Thus, the agent can use this trajectory to know which route

the car should follow. In practice, this is accomplished by a
route planner, that monitors the agent’s progress and sends
him the next target position in the car’s frame of reference
as well as the high-level driving command. These two data,
totalling 8 dimensions, are given as input to the agent. Notice
that the command is input as an one-hot encoded vector.

2) Networks architecture: The networks represented in
Fig. 2 are composed of a convolutional block of four layers,
with kernel size of 4 and stride of 2. Each layer in this
block is followed by a leaky ReLU activation function, and
the numbers of channels starts in 32 on the first layer and is
multiplied by 2 on every new layer, ending with 256 channels.

That convolutional block is followed by a fully-connected
network block with two layers, with leaky ReLU activation
function for the first hidden layer. The second layer represents
the output of the architecture.



Fig. 1. Images from the three frontal cameras located at the left, central, and right part of the vehicle, respectively. They were taken after the first few
interactions of the agent in the CARLA simulation environment considering our defined trajectory. Each camera produces a RGB image with 144 pixels of
height and 256 pixels of width. These images are fed to the networks as they are. .

Speed (1x1)
Target (2x1)

Command (6x1)

Cameras
Front

(9x144x256)

Action (2x1)

Actor Critic / Discriminator Network

D(s, a) (1x1)

Throttle (1x1)

Steer (1x1)

V(s)(1x1)

Fig. 2. Architecture of the actor-critic network and discriminator - each of them has its own separate network, with the latter having an additional input for
the action, in orange color, and a sigmoidal output D(s; a) instead of the output layer of the actor-critic network which consists of the steering direction,
throttle as actions for the actor (policy) and value of the current state V (s) for the critic. The common, though not shared architecture (in blue) is composed
of a convolutional block that process the images of the three frontal cameras, whose output features are concatenated with other nine continuous inputs for
speed, next target point in the sparse GPS trajectory, and a high-level driving command. The resulting feature vector is input to a block of two fully-connected
(FC) layers.

Both actor-critic and discriminator networks follow that
same architecture, although they do not share parameters. The
inputs to both networks correspond to 256x140 RGB images
from the three frontal cameras. When stacked, these images
yield an input with 9 channels, that is fed to the convolution
block (Fig. 2). The other continuous input is the car’s linear
velocity, which is concatenated with the 8-dimensional input
from the trajectory as well as to the flattened feature vector
from the last convolutional layer. The discriminator has an
additional continuous input for the action.

For the actor-critic network, three outputs compose the last
layer of the network: a linear unit for the value V (s), a tanh
unit for the steering wheel action, and a sigmoid unit for the
throttle action, restricting the outputs to the valid domain of
these commands [17].

3) Non deterministic policy: The agent learning process is
based on the use of a stochastic policy to calculate action
probabilities. This is achieved by using the Gaussian distri-
bution, whose mean is predicted by the policy network, and
the standard deviation is fixed to a predefined value [17]. This
was necessary because a variable entropy was shown to be
not suitable: the agent with a high entropy is easily disturbed
on sensitive moments like a turn, whereas there is not enough
exploration during turns if the entropy is too low.

IV. EXPERIMENTS

The learning navigation experiments are inspired on the
CARLA Leaderboard evaluation platform and consists of
navigating autonomously on two setups: a short route of 100
meters and one turn (setup 1); and a long route of 2; 500 meters
and four turns (setup 2). The long route was chosen from the
ones available in the CARLA Leaderboard [15]. The short one
corresponds to the first 100 meters of the long route.

A top down image from the simulator presenting each turn
from the trajectories is displayed on (Fig. 3).

A. Dataset

The expert dataset is built using a deterministic agent that
navigates using a dense point trajectory and a classic PID
controller [14]. While a dense point trajectory provide many
points at a finer resolution, a sparse point trajectory is made
of considerably less points to follow, providing just a sense
of the right direction to the agent. Thus, the former is used to
generate training data by the expert, while the latter is used
by the agent for more high-level directions. For instance, the
first setup (the short route) considers 80 and 4 points for the
dense and sparse trajectories, respectively. The second setup
(the long route) uses 760 points in the dense trajectory, and
20 points in the sparse one.




