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Abstract

Echo State Networks (ESN) are a type of Recurrent Neural Network that
yields promising results in representing time series and nonlinear dynamic
systems. Although they are equipped with a very efficient training proce-
dure, Reservoir Computing strategies, such as the ESN, require high-order
networks, i.e., many neurons, resulting in a large number of states that are
magnitudes higher than the number of model inputs and outputs. A large
number of states not only makes the time-step computation more costly but
also may pose robustness issues, especially when applying ESNs to prob-
lems such as Model Predictive Control (MPC) and other optimal control
problems. One way to circumvent this complexity issue is through Model
Order Reduction strategies such as the Proper Orthogonal Decomposition
(POD) and its variants (POD-DEIM), whereby we find an equivalent lower
order representation to an already trained high dimension ESN. To this end,
this work aims to investigate and analyze the performance of POD methods
in Echo State Networks, evaluating their effectiveness through the Memory
Capacity (MC) of the POD-reduced network compared to the original (full-
order) ESN. We also perform experiments on two numerical case studies: a
NARMA10 difference equation and an oil platform containing two wells and
one riser. The results show that there is little loss of performance comparing
the original ESN to a POD-reduced counterpart and that the performance of
a POD-reduced ESN tends to be superior to a normal ESN of the same size.
Also, the POD-reduced network achieves speedups of around 80% compared
to the original ESN.
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1. Introduction

Recurrent Neural Networks (RNN) are very relevant in applications re-
lated to modeling real-world phenomena when time-dependent data are avail-
able [1], [2], and are considered universal approximators of dynamic systems.
As RNNs are nonlinear, their training suffers from issues such as local min-
ima, slow training, and the so-called “fading gradient” problem [3], which
is a numerical problem inherent in Backpropagation Through Time (BPTT)
[4], the algorithm used to calculate an RNN gradient. While some solu-
tions focus on solving the fading gradient problem by changing the RNN
structure, such as the Long Short-Term Memory (LSTM) network [5], or the
gated recurrent unit [3], another flavor of RNN is worthy of attention: Reser-
voir Computing (RC). RC simplifies the learning by dividing the RNN into
two parts: a high-dimensional recurrent nonlinear layer (the reservoir) with
fixed, randomly generated weights and an adaptive readout output layer,
which computes an instantaneous linear combination of the dynamic reser-
voir states [6]. The output-layer weights are trained through linear least
squares, overcoming the problems related to nonlinear training and BPTT.
Reservoir Computing became a unifying term for the frameworks of Liquid
State Machines [7] and Echo State Networks (ESN) [6], both of which are
methods for RNN training independently developed.

ESNs follow the general reasoning of Reservoir Computing: they adopt
an architecture with a dynamic reservoir with fixed weights that projects
the input to a high-dimensional space and a trainable static readout out-
put layer. The dynamic reservoir needs to have many neurons [6] and the
so-called Echo State property, which refers to the stability properties of the
network. There are many successful applications of ESNs, such as: learn-
ing complex goal-directed robot behaviors [8], fuel cell lifetime prediction
[9], wind speed prediction [10], medium voltage insulators classification [11],
forecasting power system load using an ensemble deep ESN [12], power sys-
tems prediction with enhanced ESN that employ logistic mapping and bias
dropout for reservoir weights generation [13], and prediction of the daily max-
imum temperature in the Melbourne airport with multi-reservoir ESN and
an encoding and decoding scheme [14]. The large number of dynamic states
in the reservoir is an essential characteristic, as the output, being a linear
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combination of them, can represent a more extensive repertoire of dynamics.
However, using ESNs as dynamic models for problems such as optimization
and MPC (Model Predictive Control) [15] may be an issue since the higher
the number of states in the ESN is, the larger the optimization problem.
Because the number of states in the ESN heavily dominates the number of
inputs and outputs in such applications, a large reservoir size renders the
optimization problem inherently larger and harder to solve.

As ESNs are high-dimensional, model order reduction methods can find
equivalent ESN models with a considerably smaller number of states but
which still keep the properties and performance of the original high-dimensional
ESN. To that end, we count on Proper Orthogonal Decomposition (POD)
[16], which applies Singular Value Decomposition (SVD) to find an optimal
linear transformation that represents the state space of a large dynamical
system in a more compact form. POD is already widely used to reduce
the number of states of large dynamical models, especially phenomenological
models such as a gas reservoir simulator [17] with tens of thousands of vari-
ables. However, POD has one disadvantage concerning nonlinear systems:
although the method can reduce the number of states, it does not reduce
the computation number of nonlinear functions. There are developments of
interpolation methods, such as the Discrete Empirical Interpolation Method
(DEIM) [16], to mitigate the issue by pivoting and approximating the non-
linear portion of the given model computation. Both POD and DEIM can
find lower-dimensional networks that are equivalent to the original ESN and,
thus, have the potential to alleviate the computational burden of simulations
that depend on the size of the trained ESN.

The main objective of this work is to experiment with the use of POD and
DEIM to obtain a reduced-order equivalent for an already-trained ESN. For
such end, we apply the reduction given by POD in three different contexts: a
Memory Capacity (MC) [18] evaluation experiment; a NARMA10 difference
equation [19]; and a simulated oil platform containing two gas-lifted oil wells
and one riser [20]. Additionally, we have shown results using DEIM-based
reduction for the ESN in the first and last experiments mentioned above. We
compare the performance of the reduced ESN to the original (non-reduced)
ESN in the three experiments and another ESN with the same size as the
reduced ESN in the MC and NARMA experiments.

In this context, our main contributions are two-fold: (1) we have devel-
oped efficient computational frameworks for implementing large echo-state
network models in a variety of applications, which is achieved via model-
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order reduction (MOR) techniques; and (2) we have assessed the trade-offs
between low-complexity reservoir models, resulting from the application of
model order reduction (MOR), and the large baseline model in terms of nu-
merical accuracy. The low-complexity models, despite their relatively small
state-space dimensions, demonstrate comparable representation power to the
large baseline model. As such, our work contributes to this nascent field of
applications of MOR strategies to reservoir computing, which can potentially
improve computational performance in modeling, control, and optimization.
Specifically, the findings of our work are the following:

• The memory capacity of an ESN reduced by POD is generally higher
than that of a non-reduced ESN of equivalent size. This difference in
memory capacity is more significant as the desired ESN gets smaller in
size.

• Given two echo state networks with the same number of states, the ESN
obtained from POD reduction is likelier to perform better in a given
task. This property is more evident and relevant when the desired
reservoir is small.

• By employing a MOR method on ESNs, this work shows that small
ESNs are robust and performant, improving their suitability for real-
time or embedded applications with memory limitations.

• DEIM reduction alone for ESNs does not achieve satisfactory results
compared to pure POD reductions.

In broader terms, the main implication of these findings is that a smaller
version of an ESN, obtained by model order reduction, can achieve nearly
equivalent behavior to the original (and larger) ESN, thus making dynamic
reservoirs more compact. The new model can serve as a proxy model in
optimization and predictive control, as an observer, and in other related
tasks, addressing the issue of computational cost in a reservoir consisting
of a large number of internal states (reservoir size), which can be orders of
magnitude larger than the number of inputs and outputs.

This paper is organized as follows: Section 2 contains related works,
Section 3 presents the Echo State Networks, Section 4 describes POD and
DEIM, Section 5 reports on the case studies and experimental testing for the
reduced ESN, and Section 7 concludes the work.
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2. Related Work

In the following, we will discuss works in the literature that address the
issue of reducing the model size in reservoir computing. One of them is
[19], where they propose reducing the number of states by considering the
output as a linear combination of the states at different instants in time,
comparing to an original ESN through the Information Processing Capacity
(IPC) metric, and also applying the proposal to a NARMA system and the
generalized Hénon-map. The solution raises the effective number of states as
a multiple of the delay or “drift-state” number utilized.

The architecture is very hardware-friendly, easing the computation com-
pared to a standard ESN. Another example is the work [21], where they
propose to employ the controllability matrix of the ESN as a means to find a
so-called minimal ESN, which would be the ESN with the smallest reservoir
that could reproduce the task at hand. They train the ESN for a particular
task, obtain the controllability matrix at given points, and define its rank
as a new candidate reservoir size. An extensive search procedure is then
performed to find the optimal ESN at that size; however, there is no direct
connection between the larger and the smaller ESN. In summary, the method
in [21] proposes a useful way of finding a minimal reservoir for a task. In
comparison, our work follows a different direction: reducing the size of the
network through POD. Another work [22] proposes a different approach to
reducing reservoir size, which calculates the correlation between each neuron
and eliminates the reservoir neurons with the highest correlation.

The necessary large number of reservoir states in an ESN implies a com-
plex computational model, therefore works such as [23] employ methods of
so-called “network size reduction,” which perform multi-objective optimiza-
tion on the output weights and minimize not only the least-square error
but also the number of non-zero elements in the output weights. Enforcing
sparseness is ideal for simplifying computations with the ESN. Another work
that follows this line of reasoning is [24], where they enforce a minimum
complexity ESN by forcing the ESN reservoir to follow a deterministic form
(i.e., a circular reservoir).

In [25], they propose to add the reservoir dimensionality reduction into
the architecture via Principal Component Analysis (PCA) and calculate the
output layer based on the PCA output instead of the reservoir states. They
affirm that this enhances the dynamic properties of the resulting ESN con-
cerning the system identified and improves the network generalization ca-
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pabilities. Also, applying dimensionality reduction in the states renders the
ESN a tool for dynamic system analysis. In this sense, our POD-ESN method
is similar to PCA regarding obtaining the new state space but goes beyond
[25] by embedding the reduction achieved in the reservoir’s state update
equation. In other words, the reservoir recurrent simulation is executed in
the reduced state space with POD-ESN, which does not happen in [25].

Another approach of reduction in reservoir computing, not involving
POD, is proposed in [26]. Their idea involves procedurally removing neu-
rons according to the output weight value, which they curiously discovered
that the network performance improves (given the Lorentz system as an ap-
plication) by removing the neurons associated with large output weights.
They thoroughly analyze the effect of removing different types of nodes in
the ESN.

3. Echo State Networks (ESN)

An ESN is a type of recurrent neural network with useful characteristics
for system identification [6], as it represents nonlinear dynamics well and the
training consists in solving a linear least-squares problem of relatively low
computational cost when compared to nonlinear optimization.

3.1. Model

Proposed in [27, 28], the ESN is governed by the following discrete-time
dynamic equations:

x[k + 1] = (1− γ)x[k]

+ γf(Wr
rx[k] +Wr

iu[k] +Wr
b +Wr

oy[k]) (1)

y[k + 1] = Wo
rx[k + 1], (2)

where: the state of the reservoir neurons at time k is given by x[k]; the
current values of the input and output neurons are represented by u[k] and
y[k], respectively; γ is called leak rate [6], which governs the percentage of
the current state x[k] that is transferred into the next state x[k + 1]. The
weights are represented in the notation Wto

from, with “b”, “o”, “r”, and “i”
meaning the bias, output, reservoir, and input neurons, respectively; and
f = tanh(·) is an activation function widely used in the literature, also called
a base function in system identification theory [1]. Fig. 1 depicts a standard
architecture of an echo state network.
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Figure 1: Representation of an Echo State Network, one of the possible models in Reservoir
Computing. Dashed connections (from Reservoir to Output Layer) are trainable, while
solid connections are fixed and randomly initialized. This figure was obtained from [29].

The network has N neurons in the reservoir, which is the dimension of
x[k] and is typically orders of magnitude higher than the number of network
inputs. As long the network training uses regularization, N can be as large
as needed, but at the expense of increased computation time to update the
reservoir states as defined in (1). According to [18], the ESN with no output
feedback connections (the output does not affect the state), which is given
by Wr

o, has a memory capacity (MC) bounded by the number of neurons in
the reservoir (MC ≤ N), assuming the use of linear output units.

The recurrent reservoir should possess the so-called Echo State Prop-
erty (ESP) [28], i.e., a fading memory of its previous inputs, meaning that
influences from past inputs on the reservoir states vanish with time. The
ESP is guaranteed for reservoirs with tanh(·) as the activation function, pro-
vided that the singular values of Wr

r < 1. However, this condition limits
the richness of the reservoir’s dynamical qualities, which discourages its use
in practice. Note that all connections going to the reservoir are randomly
initialized, usually according to the following steps:

1. Every network weight is initialized from a normal distribution N (0, 1).

2. Wr
r is scaled so that its spectral radius ρ (Eigenvalue with the largest

module) characterizes a regime able to create reservoirs with rich dy-
namical capabilities. Setting ρ < 1 in practice often generates reservoirs
with the ESP [6]. However, reservoirs with ρ > 1 can still have the ESP
since the effective spectral radius may still be lower than 1 [30, 31].

3. Wr
i and Wr

b are multiplied by scaling factors f r
i and f r

b , respectively,
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affecting the magnitude of the input.

These scaling parameters, ρ, f r
i , and f r

b are crucial in the learning perfor-
mance of the network, having an impact on the nonlinear representation and
memory capacity of the reservoir [32]. Also, low leak rates allow for higher
memory capacity in reservoirs, while high leak rates favor quickly varying
inputs and outputs. The settings of these parameters should be such that
the generalization performance of the network (loss on a validation set) is
enhanced.

3.2. Training

While in standard RNNs all weights are trained iteratively using gradient
descent [4], ESNs restrict the training to the output layer Wo

r . Because
the echo state property does not emerge with output feedback Wr

oy[k], this
work favors reservoirs without feedback from the output, i.e., Wr

o = 0. Also,
the inputs do not interfere directly with the output, as systems with direct
transmission are less smooth and more noise-sensitive. To train an ESN,
the input data u[k] is arranged in a matrix U and the desired output d[k]
in vector D over a simulation time, where each row uT of U corresponds
to a sample time k and its columns are related to the input units. For the
sake of simplicity, we assume that there are multiple inputs and only one
output. The rows of U are input into the network reservoir according to
each sample time, thereby creating a state matrix X containing the resulting
state sequence. Then, we apply the Ridge Regression algorithm [2] by using
X as the input data matrix and D as the output data matrix or, in this case,
a vector as we assumed single output. Ridge Regression results in solving
the following linear system:

(XTX− λI)Wo
r = XTD, (3)

where λis the Tikhonov regularization parameter, which penalizes the weight
magnitude and avoids overfitting. There are also methods to apply least-
squares training online [1], but this work does not use these algorithms.

4. Model Order Reduction

In this section, we propose Model Order Reduction (MOR) methods for
reducing the reservoir dimensionality in ESNs, specifically the Proper Or-
thogonal Decomposition (POD) and the Discrete Empirical Interpolation
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Method (DEIM). We also propose a strategy for correcting the steady-state
error introduced in ESNs by MOR methods.

4.1. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a method to find a linear trans-
formation [33] T for a given system that maps a high-dimensional state space
into a reduced one, namely:

x = Tz (4)

where x is a vector of dimension n and z is a vector of dimension m ≪ n, so
that T ∈ Rn×m.

The transformation itself is akin to a similarity transformation, with the
main difference being that T lacks an inverse for not being a square ma-
trix. However, the T resulting from POD is orthonormal (TTT = I), so the
transpose is used in place of an inverse.

To find T, we gather snapshots of the states in a given dynamical system
response, akin to gathering data in a machine learning problem. The columns
of the snapshot matrix X ∈ Rn×N are the states x[k] ∈ Rn, where N is the
number of snapshots such that N ≥ n. Then, we wish to minimize the error
induced by projecting the original state onto the reduced space and back,
which leads to the following error function:

E(T) =
N∑
k=1

(
x[k]−TTTx[k]︸ ︷︷ ︸

z[k]

)2
(5)

The second term is x projected onto the reduced space of z, and then lifted
back. The optimal T is obtained through singular value decomposition
(SVD) [34], decomposing X in the following form:

UsvdΣVT = X (6)

where Usvd contains the left singular vectors and has dimension n × n, Σ
contains the singular values and has dimension n × N , with only n non-
zero columns. We consider that Σ is sorted from the largest to the smallest
singular value. POD does not use the right singular vector matrix V.

The transformation T that minimizes E(T) is found by concatenating
the columns with the m largest corresponding singular values from Usvd. We
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seek a truncation so that the reduced system energy is close to the original,
measured by:

ϵ =
m∑
j=1

ϵj ϵj = σj/

n∑
i=1

σi (7)

where ϵ is the total energy contribution of the singular values maintained
in the reduced-order model, σj is the jth highest singular value, ϵj is the
energy contribution of that given singular value, and m is the reduced state
dimension. The energy contribution of the remaining singular values in the
reduction is a metric on how close the reduced-order model is to the original
system regarding information. For this work, we measure the energy con-
tribution of each singular value of the original signal and truncate Usvd to
obtain T so that ϵ reaches a desired energy contribution value (e.g., ϵ = 0.95,
so that the reduced system has 95% of the original system’s energy). In other
words, the reduced-order model carries ϵ information of the original system.
After obtaining T for the dimension reduction through the process above,
the reduced ESN dynamics can be expressed as follows:

z[k + 1] = (1− γ)z[k]

+ γTT f(Wr
rTz[k] +Wr

iu[k] +Wr
b) (8a)

y[k + 1] = Wo
rTz[k + 1], (8b)

We can observe from the operation TT f(·) that the reduced-order ESN
does not reduce the number of computations by only performing POD on it.
In fact, to compute the element-wise tanh, T brings the dimension back to
the original state space size, which is to be reduced again with TT , increasing
the number of computations. This computational increase is inherent in POD
for nonlinear systems and will be dealt with by the method described in the
next section.

4.2. Discrete Empirical Interpolation

The Discrete Empirical Interpolation Method (DEIM) is an approxima-
tion method to circumvent the POD computation issue [16], which consists
of state projection and lifting operations to compute state transitions in the
reduced-order model. The core idea of DEIM is to approximate the nonlin-
ear term of a dynamic system as a polynomial interpolation that resembles

10



the strategy employed in POD. Given the following discrete-time nonlinear
system:

x[k + 1] = Ax+ f(x[k]), (9)

where the nonlinear function is elementwise, meaning that

f =
(
f(x), f(x), . . . , f(x)

)
(10)

for a given function f such as tanh. Notice that the system is divided into
linear and nonlinear portions. Applying the POD (x = Tz) into such a
system yields:

z[k + 1] = TTATz[k] +TT f(Tz[k]) (11)

The nonlinear mapping f of the dynamic system can be approximated as
follows:

PT f(Tz[k]) ≈ PTUc[k] (12)

where U ∈ Rn×m, which is obtained from the same POD as T, however with
a different number m of singular vectors, with n being the number of states,
and P is a pivoting matrix of the same dimension as U. DEIM interprets
that a linear combination, with basis U and the elements c[k] as function
coefficients, approximates the elementwise function f .

After obtaining U from Usvd, we then obtain P with the following pro-
cedure [16]:

1. The index and value of the largest element of the first left-singular
vector is stored in a list. P starts as a column matrix with the only
non-zero element being the value 1 at the row corresponding to this
index.

2. For each column l ≥ 2 of the POD left-singular vectors (where Ũl is a
matrix with the first l − 1 columns of U):

(a) find c where (PT Ũl)c = PTul, where ul is the left-singular vector
corresponding to the lth column of U.

(b) Calculate r = ul − Ũlc and store the maximum absolute value
and index of r in a list. Add a new column to P according to the
obtained index.

3. Output: Pivoting matrix P according to the order dictated by the
index list obtained.
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This procedure guarantees that PT Ũl is always nonsingular; thus c is the
unique solution to the linear system in step 2 [16]. Letting U be the matrix
of left singular values obtained from the procedure, it follows from (12) that:

c[k] = (PTU)−1PT f(Tz[k]) (13)

The result from (13) leads to the DEIM function interpolation:

f̂(Tz[k]) ≈ U(PTU)−1PT f(Tz[k]) (14)

This function approximation has an ℓ2 error bound of the following form
[16]:

eℓ2(f) ≤ ∥(PTU)∥2∥(I−UUT )f(Tz[k])∥ (15)

where, in turn:
∥(PTU)∥2 ≤ (1 +

√
2n)m−1∥u1∥−1

∞ (16)

with u1 being the first column ofU and n being the number of original states.
The main advantage of DEIM is that, as f is an element-wise nonlinear

function, the following equality holds:

U(PTU)−1PT︸ ︷︷ ︸
T1∈Rn×n

f(Tz[k])︸ ︷︷ ︸
f :Rn→Rn

= U(PTU)−1︸ ︷︷ ︸
T2∈Rn×m

f(PTTz[k])︸ ︷︷ ︸
f :Rm→Rm

(17)

The difference between the right-hand side and left-hand side of this equation
is better seen in a compact form,

T1f(Tz[k]) = T2f(P
TTz[k])

where T1 has n columns, which yields the same computation problem as the
original Galerkin projection, whereasT2 hasm columns, which is the reduced
state space. This simple difference grants huge computational savings since
the online calculations would be performed in terms of the reduced dimension
m, m ≪ n, which mitigates the computation issues regarding the POD
method.

The DEIM-approximated reduced order ESN has the form obtained by
applying DEIM from Eq. (17) into the already reduced ESN at (8):

z[k + 1] = (1− γ)z[k]

+ γTTT2f
(
PTWr

rTz[k] +PTWr
iu[k] +PTWr

b

)
(18a)

y[k + 1] = Wo
rTz[k + 1], (18b)

The property PT f(·) = f(PT ) holds for elementwise operations, which justify
the matrix placement in the DEIM reduced-order ESN.
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4.3. Stability Loss in DEIM

According to [35], a contractive linear system is guaranteed to retain
stability when applying POD for model order reduction; therefore, if the
ESN is contractive, the POD-ESN is guaranteed to retain stability. However,
DEIM has no such property. Assume an equilibrium point xeq of the ESN,
and a fixed input u,

xeq = f(Wr
rxeq +Wr

iu+Wr
b) (19)

and its reduced mapping zeq = TTxeq. The Jacobian of the full and reduced
order model are:

J(xeq) = (1− γ)I+ γf ′(g(xeq))W
r
r (20)

J(zeq) = (1− γ)I+ γTT f ′(g(Tzeq))W
r
rT (21)

where:
g(x) = Wr

rx+Wr
iu+Wr

b (22)

Since f ′ is a diagonal matrix where each element belongs to the interval
(0, 1] for being the elementwise derivative of the tanh function, the stability
of the ESN in both cases is governed by Wr

r at an equilibrium point. Also, as
per [35], the POD reduction retains the stability of the ESN. Summing up,
the original and reduced-order ESNs are stable provided that the spectral
radius of Wr

r is smaller than 1.
With DEIM, however, the stability is not retained, as shown by calculat-

ing the Jacobian of an ESN reduced by both POD and DEIM:

JDEIM(z) = (1 − γ)I + γTTU(PTU)−1f ′(PTg(Tz))PTWr
rT (23)

Notice that the term (PTU)−1 can amplify the Jacobian to the point
that the ESN dynamic system has an unstable eigenvalue, despite POD-ESN
being stable. This term represents the pivoting of the truncated singular
vectors associated with DEIM.

5. Applications

This section presents results from experiments with reduced-order ESNs
for three case studies, along with a preliminary analysis on the singular values
of the ESN snapshots.
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5.1. Preliminary Study: Energy contribution distribution in Echo State Net-
works

POD and DEIM originate from applying SVD into the ESN state response
matrix, obtained from exciting the ESN’s reservoir with an input signal.
Thus, the SVD does not depend on the output layer. To test the influence of
input signals into the singular values of the state snapshots, we initialize 20
different single-input ESN reservoirs and apply SVD into the snapshots of the
response obtained from the reservoir, given as inputs with 10, 000 timesteps:

• A white noise following the normal distribution N (0, 1).

• Four different APRBS (Amplitude-modulated Pseudo-Random Binary
Signal) random stair signals, defined by their minimum period, i.e., 10
timesteps, 100 timesteps, 500 timesteps, and 1, 000 timesteps.

• A concatenation in time of all the signals above.

The input signals for the experiments are shown in Figure 2. Note that this
discussion concerns only the state dynamics of the reservoir; therefore, it is
neither dependent on the identified system nor on the output weights.

After exciting the ESN with the signals mentioned above, one at a time,
we perform SVD of the resulting ESN state response snapshots and plot
the energy contribution ϵj associated with each singular value, sorted from
highest to lowest according to Eq. (7). All the reservoirs employed for this
experiment are fully leaked (γ = 1), have 500 neurons, a spectral radius
ρ = 0.99, and a value 0.1 for both input scaling and bias scaling.

Figure 3 showcases the mean and standard deviation of the energy contri-
bution of the 10 highest singular values for each state snapshot considering
20 randomly initialized reservoirs. We infer from this result that the singu-
lar values become more evenly distributed the higher the frequencies of the
input signal are. As the white noise is a signal with heavy high-frequency
information, we expect the ESN state response to having a more even energy
contribution distribution among the singular values.

Meanwhile, the lower frequency signals have the energy contribution con-
centrated about the highest magnitude singular value. In fact, real-life dy-
namic systems work as low pass filters [33] and, therefore, they are expected
to have lower frequency information. The slower the system dynamics are,
the larger the minimum period of an APRBS signal needs to be, which di-
rectly affects the singular value profile of the model order reduction.
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Figure 2: One-dimensional input signals for the reservoir energy contribution distribution
experiment. White noise (top), APRBS signals (usually used in identification tasks): with
a minimum period of 10, 100, 500, and 1,000 timesteps, respectively, from second topmost
plot to bottom.
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Figure 3: Mean and Standard deviation of the first ordered 10 singular values (with 0
corresponding to the highest and 9 to the lowest) obtained from the snapshots of 20
different ESN reservoirs. Each color corresponds to a different input signal fed to the ESN
reservoir, shown in Fig. 2.
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This experiment implies that, since the distribution of the energy contri-
bution depends entirely on the input signal frequency, the number of states
pruned by MOR is higher for cases with low-frequency dynamics. After all,
since the energy contribution is more concentrated on the first singular val-
ues, the number of columns pruned is higher than when the singular values
are more evenly distributed (as in the case of high-frequency signals like white
noise). As an easy example, the highest energy contribution singular value
for the APRBS signal with a minimum period of 1, 000 timesteps contributes
more to the total energy of the snapshots than the sum of the 10 highest
singular values for the white noise shown in the plot.

5.2. Memory Capacity Evaluation

Short-term Memory Capacity (MC) is a well-known metric for Echo State
Networks [18] that measures how well an ESN can remember past inputs and
general dynamic storage capacity. MC serves as a performance measurement
for ESN reservoirs which is obtained from the following procedure:

• For an arbitrary n, train a single-input, single-output Echo State Net-
work so that the input is a given white noise η[k], and the output is
the same white noise delayed n timesteps η[k − n]. In layman’s terms,
the ESN is supposed to “memorize” the input from n timesteps ago.

• Obtain the correlation coefficient Rn for the training with an arbitrary
n,

Rn =
cov(yesn, η[k − n])

var(yesn)var(η[k − n])
(24)

where cov(·) is the covariance operator, yesn is the single ESN out-
put, var(·) is the variance operator, and, therefore, Rn is merely the
determination coefficient for a given delay n.

• The memory capacity is calculated, in theory, as:

MC =
∞∑
n=1

Rn (25)

The MC of an ESN was mathematically proven to have an upper bound
in its number of neurons N [18], which means that it is directly related to
the number of network neurons.
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For this work, we propose an experiment to compare the memory capacity
of the reduced-order model of the ESN, and the original ESN, since the
number of neurons is the upper bound for MC. Because it is impossible to
run infinite training experiments, we define the memory capacity for this
experiment as follows:

MC =

NMC∑
n=1

Rn (26)

where NMC = 100 is a sufficiently large number to measure the memory
capacity of the network. As preliminary tests show, after a given n, the
determination coefficient converges to a low value. Therefore, the information
regarding memory capacity is more concentrated in the lower n spectrum,
endorsing the limited number of experiments (NMC = 100) for comparison
purposes.

5.2.1. POD Reduction

We ran the memory capacity experiment for different numbers of neu-
rons (N = {400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200}) with an
Energy Cutoff (EC) of 1%, 5%, and 10%. After initializing the ESN reser-
voir at random, we perform model order reduction for 12 different reservoirs
in each configuration. We then measure the mean and standard deviation for
the memory capacity of these twelve runs while also obtaining the range of
the reduced dimension for a given energy cutoff. This analysis allows us to
measure the memory capacity drop for the model order reduction and assess
how reservoir-dependent the order-reduction procedure is.

All reservoirs analyzed are fully leaked (γ = 1.0) and have input and bias
scaling at 0.1. Also, the reservoir spectral radius is ρ = 0.99.

Figure 4 showcases the results of the Memory Capacity experiments when
performing MOR at the tested ESNs given different energy cutoffs, depicting
both mean and standard deviation of the 12 runs.

The first plot depicts the number of ESN neurons before applying POD to
a given network. It shows the expected drop in MC resulting from applying
MOR with more energy cutoff.

Meanwhile, the second plot portrays the MC as a function of a given
network’s exact number of states after performing MOR through POD. As
MC progresses monotonically, given the number of states, either in an ESN
or in a given MOR of that ESN, it becomes easy to map a point of the second
plot into the first one: for example, the last red point (from left to right) of
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Figure 4: Plot of the memory capacity as a function of the number of neurons of the
original network (upper plot), and as a function of the number of states (lower plot).
Each point is colored according to the energy cutoff of the POD-ESN that obtained the
MC shown (points in blue are the MC obtained from full ESNs). EC means the energy
cutoff of the applied POD.
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both plots (marked within a blue circle) have the same memory capacity since
they correspond to the same network/EC configuration. Thus, the MOR of
an ESN with 2200 neurons (first plot) has roughly 750 states (second plot)
at 1% energy cutoff.

As per the previous section, since this experiment traditionally employs
a white noise signal, the drop in the number of reduced states is not very
significant; however, the drop in MC is still small, given that a large number
of states were still cut off (even in the case of 10% energy cutoff for the
2200 neuron network, the number of states was reduced to almost a third).
In fact, the second plot shows that a POD-reduced network ends up being
more powerful in terms of MC than a full (non-reduced) ESN with the same
number of states: when we compare an ESN with a given reservoir size to a
POD-reduced network from a larger ESN with the same number of states as
that ESN reservoir size, the POD-reduced ESN consistently achieves a higher
MC. Of course, the better performance is justifiable because a POD-reduced
ESN is still more structurally complex (originated from a larger ESN) than an
ESN (randomly generated) with the same number of neurons as the reduced
network.

5.2.2. DEIM Reduction

We also performed DEIM for each POD-reduced ESN to further reduce
the number of tanh in the computations and evaluate the drop in MC com-
pared to the POD-reduced ESN. We tested four different energy cutoff con-
figurations for the DEIM: {1%, 5%, 10%, 20%}. This choice of four values is
justified because they represent distinct magnitudes of energy cutoff, testing
how the DEIM behaves on four different approximation precision require-
ments.

Table 1 shows the results of applying these DEIM configurations into each
POD for three original reservoir sizes N = {800, 1400, 2000} (from the top-
most table to the bottom-most one, respectively). It presents the results for
the DEIM reduction, where the memory capacity is evaluated for each con-
figuration in energy cutoff for both POD and DEIM. The number in paren-
thesis is the actual dimension resulting from the reduction. Each column
corresponds to a different energy cutoff configuration for DEIM, evaluated in
the first row. In contrast, each row represents a different energy cutoff con-
figuration for POD, evaluated in the first column. For instance, the MC of an
ESN with a 1% energy cutoff POD (yielding 1, 119 states when N = 1, 400)
and a 5% energy cutoff DEIM (yielding 748 tanh function evaluations when
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Table 1: Memory capacity evaluated for different energy cutoffs used in POD and DEIM.
Each table considers an original ESN with a different size N , to be reduced.

N = 800 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(678) 5%(430) 10%(279) 20%(128)
0%(800) 19.88± 0.01 − − − −
1%(686) 19.87± 0.01 0.44± 0.20 0.099± 0.01 0.08± 0.04 0.54± 0.18
5%(445) 19.86± 0.01 16.48± 2.21 0.059± 0.026 0.096± 0.02 0.55± 0.17
10%(291) 19.84± 0.008 19.68± 0.03 0.99± 0.25 0.097± 0.02 0.54± 0.18

N = 1, 400 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(1, 186) 5%(748) 10%(484) 20%(226)
0%(1, 400) 19.93± 0.003 − − − −
1%(1, 119) 19.93± 0.003 0.11± 0.03 0.03± 0.03 0.04± 0.02 0.17± 0.05
5%(772) 19.91± 0.003 3.189± 1.09 0.03± 0.02 0.04± 0.02 0.17± 0.04
10%(505) 19.90± 0.003 19.18± 0.50 0.19± 0.02 0.025± 0.02 0.17± 0.05

N = 2, 000 Energy Cutoff (EC) for DEIM
EC (POD) 0% 1%(1, 835) 5%(1, 122) 10%(713) 20%(333)
0%(2, 000) 19.96± 0.002 − − − −
1%(1, 682) 19.95± 0.002 0.06± 0.01 0.02± 0.02 0.03± 0.01 0.03± 0.03
5%(1, 045) 19.94± 0.002 1.2± 0.4 0.01± 0.02 0.02± 0.02 0.08± 0.03
10%(671) 19.92± 0.002 18.37± 0.90 0.09± 0.03 0.04± 0.01 0.07± 0.03
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N = 1, 400) is 0.099, 0.03 and 0.02 for N = 800, 1400, 2000 respectively. No-
tice that there was no POD reduction for the first row of each table and no
DEIM reduction for the first column of each table. The empty cells indicate
that DEIM can not be employed without first applying the POD reduction.

The only time DEIM achieved an MC close to the MOR was when there
was a 1% energy cutoff for DEIM considering 10% energy cutoff for POD.
That is, DEIM is performed for smaller reduced-order models. Regarding
the experiments, performance is generally mildly better whenever DEIM has
a higher number of states ratio than the POD states. For this experiment,
DEIM did not perform well as expected since the white noise signal does not
allow for a significant reduction of states, as it is a highly heavy information
signal.

5.3. NARMA System

As an initial case study for the POD reduction of the ESN, we try to iden-
tify the behavior of a so-called NARMA (Nonlinear Autoregressive Moving
Average) difference equation system [19], equated as follows:

y[k] = 0.3y[k − 1] + 0.05y[k − 1]
m∑
i=1

y[k − i]

+ 1.5u[k −m+ 1]u[k] + 0.1 (27)

where m = 10 is the order of the system.
As in [19], the excitation signal applied in (27) is drawn from the random

uniform distribution with a value range of 0 ≤ u[k] ≤ 0.05. A simulation
performs 5, 000 time steps where the first 2,000 samples are labeled as training
data and the rest is labeled as test data. This work employs the R2 metric
to measure network performance.

With the dataset mentioned above, we train an ESN with the following
configuration: 1, 400 neurons in the reservoir layer, high enough so that we
show the MOR potential at work; a leak rate of γ = 0.7; scaling of 0.1
for both bias and input connections; and spectral radius of ρ = 0.99. In
terms of R2, the network had a performance of 0.95949337 for the NARMA
model output. We will now carry out experiments of POD for this network
to evaluate how the MOR performs in terms of R2 concerning the original
1, 400 units network.

Figure 5 showcases the experiment regarding applying POD reduction so
that the number of states of the POD-reduced ESN appears in the x axis
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Figure 5: Experiment comparing a POD-reduced ESN (blue dots) with an ESN of equiv-
alent size (to the reduced ESN) (orange triangles) for the 10th-order NARMA task. The
POD reduction is applied on an ESN with 1, 400 units in the reservoir. The horizontal
axis is the number of states (units) of the reduced (full) network, while the vertical axis
is the R2 metric on the test set. The plot’s blue horizontal line corresponds to the R2 of
the 1, 400 units ESN.
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(blue dots). For comparison, we also plotted the R2 for the same NARMA
experiment with 10 runs of full (non-reduced) ESNs with the same reservoir
size as the networks that underwent POD reduction (orange triangles). The
POD-ESN reduction generally achieved superior performance over the full
ESN at the same reservoir size, which is understandable, as the POD-reduced
ESN is not only supposed to be an emulation of a larger ESN behavior but
also more complex in structure. The NARMA experiment also shows that
the R2 metric for ESNs reduced to at least 50 states is very similar to the
metric achieved by the original 1,400 units ESN, i.e., the blue dots are very
close to the horizontal blue line in the plot of Figure 5 when the number of
states is higher than 50.

5.4. Two Wells and One Riser Platform

We now test the MOR over the ESN for a physical problem: an oil produc-
tion platform consisting of two gas-lifted oil wells and one riser, as illustrated
in Figure 6. To gather data, we utilize a composite model consisting of two
well models, a riser model, and a manifold that connects the three units.

All models assume a 2-phase fluid containing gas and liquid. The well
model assumes two control volumes in the gas injection annulus and the
production tubing, with boundary conditions for gas-lift, reservoir, and outlet
pressure. The riser model considers a horizontal pipeline and the vertical
portion of the riser as two separate control volumes while assuming the inlet
flow and outlet pressure as boundary conditions. The manifold assumes no
load loss due to friction; therefore, it equates the sum of the output flow from
the wells to the riser input flow and the output pressure of each well to the
riser inlet pressure.

Overall, the system has 120 algebraic variables, 10 state variables, 5 input
variables, and precisely 5 boundary conditions. [36] presents the model in
more detail, while [37] describes the riser model . The model configuration
is the same as the one described in [38]. The reader can refer to these works
for more details on the mathematical modeling of the platform.

The experiment with the two-well production platform depicts how to
achieve MOR with ESNs from a system identification standpoint. First,
we must train an ESN model for the two-well one-riser platform. We gen-
erate 50, 000 timesteps of data from numerical simulation of the platform
model, yielding a dataset where the 2-dimensional input to the ESN is com-
posed of both well-production chokes uch,1 and uch,2. Further, the desired 2-
dimensional output of the network corresponds to each well bottom-hole pres-
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sure: Pbh,1, Pbh,2. The training dataset consists of the first 10, 000 timesteps,
while the segment from k = 20, 000 to k = 30, 000 serves as a validation set,
and the rest (k > 30, 000) as a test set. With the described dataset, we train
an ESN with 1, 400 reservoir units (chosen this high for the sake of demon-
strating the MOR potential at work), a leak rate of γ = 0.7, scalings for both
bias and input equal to 0.1, and spectral radius ρ = 0.99. In terms of R2

metric, the network had a test performance of (0.99881673, 0.99900379) for
each individual well bottom-hole pressure.

Now, we run POD experiments with the previously trained network to
assess how MOR performs in terms of R2 compared to the original 1, 400
units network. Figure 7 depicts an experiment where MOR of different state
sizes was tested in terms of R2 over the test data. One can infer that, after a
given number of states (150), the performance remains consistently close to
the original network in terms of R2, despite having only 10% of the original
number of states.

gas-lift source gas-lift source

Well 2Well 1

Oil and Gas Reservoir

Manifold

Outlet

Riser

Riser Production Choke

gas-lift valve 1
gas-lift valve2

Well Production Chokes

z

Figure 6: Representation of an oil platform containing two wells and one riser. From [20].

25



0 50 100 150 200 250 300 350
Number of states

0.990

0.992

0.994

0.996

0.998

1.000

R
2

reduced ESN Pbh, 1
reduced ESN Pbh, 2

Figure 7: POD-ESN for a system identification task. The full ESN network has 1, 400
neurons and was trained to model the platform with two wells and one riser. The x axis
is the number of states of the reduced network, whereas the y axis is the R2metric on the
test set for each output variable (bottom-hole pressures). The bottom-hole pressure of the
first well is represented in blue, while the orange color denotes the bottom-hole pressure
of the second well. The R2 of the original network corresponds to the horizontal lines of
the respective colors for comparison.
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Figure 8: Single simulation run involving a POD with 92 states (0.01 energy cutoff) and
a DEIM interpolation with m = 1, 073, put side by side with the original data for the
bottom hole pressure pbh of both wells (normalized), and the original ESN.

POD reduction that resulted in 92 states also showcased good perfor-
mance compared to the original network of 1, 400 neurons. However, with
only POD, the computational problem of computing TT f remains. We se-
lect the case where the reduced network has 92 states (representing an energy
cutoff of 1%) and try performing DEIM on it. Figure 8 depicts a simulation
for the ESN, POD-ESN, and POD-DEIM ESN for the test data of the two-
wells and one riser platform. Even though there was a reduction from 1, 400
to only 92 states, the behavior of the ESN and the POD-ESN managed to
be close in terms of dynamics. The application of DEIM reduced the com-
putation nodes from 1, 400 to 1, 073; however, some overshooting emerged,
which was not present in the ESN and POD-ESN. Concerning the simu-
lation run in Figure 8, the R2 for the normalized bottom-hole pressure of
each well was: (0.9988, 0.9990) for the ESN, (0.9979, 0.9981) for the POD-
ESN, and (0.9873, 0.9671) for the DEIM-POD-ESN. There is little drop in
response quality from reducing the number of states from 1, 400 to 92 through
POD, but performing interpolation from a standard POD to a POD-DEIM
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framework seems to affect the response more significantly. The small drop
in response quality concerning the POD-ESN is expected, as the POD was
performed requesting a 1% energy cutoff. In other words, the reduced-order
model is 99% close to the original ESN regarding dynamic information.

6. Discussion

POD-reduced ESN achieved a response close to the original ESN for the
NARMA and the two-well one-riser case study, while it incurred a minor
performance loss in the MC experiments. However, DEIM did not reach the
same performance as POD in those experiments. These findings indicate
that DEIM incurs more dynamic-information loss than POD, as the latter
retains the number of activation functions in the reduced model even though
it reduces the number of states. Thus, we conjecture that the capacity of a
reservoir to represent a nonlinear system accurately is more influenced by the
combination of the nonlinear functions in a high-dimensional space than by
maintaining a high-dimensionality of the reservoir states themselves. In the
context of MOR, this function combination is given by lifting the reduced
states back to the original space just before applying the tanh nonlinearity.

The application of POD leads to some reduction in the memory required
for storing and using the POD-reduced ESN. First, the state-to-output linear
combination matrix Wo

rT maps the reduced space directly to the output,
invariably reducing its size. Also, the computation of the activation functions
becomes slightly less expensive memory-wise because the resulting matrix
Wr

rT, which is a product computed offline, has fewer elements. Of course,
the resulting matrix is still large compared to an ESN with the same size
as the reduction, rendering the same-size ESN less complex than the POD-
reduced one.

Even though POD computes the same number of activation functions as
the original ESN, the computation time is significantly reduced, as shown in
Table 2. This table shows the mean time it took to execute a step in the full
ESN against the time it took to perform a POD-ESN computation step for
the NARMA experiment. For instance, when applying POD-ESN to reduce
from 1400 states to 66 states, we get an 80% decrease in mean execution time
(from 0.767 ms to 0.147 ms) while still maintaining excellent performance,
as this setup is near the horizontal line in Figure 5. All experiments were
performed under similar conditions and with the same computer.
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Table 2: Mean execution time for the NARMA experiment composed of 5, 000 time steps.

Mean Execution Time (ms) St. Dev. (ms)
ESN (size=1400) 0.767 0.537
POD (size=3) 0.072 0.0498
POD (size=6) 0.078 0.0251
POD (size=7) 0.141 0.391
POD (size=8) 0.131 0.340
POD (size=9) 0.160 0.543
POD (size=10) 0.140 0.467
POD (size=11) 0.233 0.955
POD (size=13) 0.105 0.122
POD (size=17) 0.106 0.0738
POD (size=30) 0.135 0.0856
POD (size=66) 0.147 0.254
POD (size=73) 0.144 0.138
POD (size=82) 0.141 0.140
POD (size=92) 0.155 0.109
POD (size=106) 0.151 0.0744
POD (size=123) 0.149 0.0907
POD (size=149) 0.183 0.407
POD (size=186) 0.201 0.145
POD (size=248) 0.230 0.134
POD (size=375) 0.408 0.199

As shown in Table 2, even though there is no computation reduction in
the nonlinear nodes, the computational time for a POD-ESN to compute a
time step is reduced, even if by a small margin. This computation-speed gain
happens precisely because the reduced-order ESN has fewer states, despite
the nonlinear node computation remaining unchanged.

As previously discussed, the poor performance of DEIM in the memory
capacity experiments corroborates the loss of stability incurred in the DEIM-
reduced ESNs. Besides, even when the DEIM-reduced ESN dynamic system
remained stable, as in the two-well experiment illustrated in Figure 8, the
system experienced high overshoots translating into modeling errors. The
independent work [39] that also implements POD/DEIM on ESN, which
appeared in the literature during the writing of this research, proposes a
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method to deal with the stability issue. However, the method is restricted
to the particular class of ESNs with dynamic equations without the bias
term. That method relies on expanding the nonlinear dynamics reduced by
the DEIM so that the Jacobian contribution of the terms affected by (PTU)
becomes null concerning u = 0. In this context, generalized methods (which
account for the bias term as well) to guarantee stability retention of an ESN
interpolated by DEIM are an interesting topic for future works.

7. Conclusion

In this investigation, the POD achieved exceptional results in reducing the
number of states of an ESN and maintaining performance. The reduced ESN
performed nearly as well as the original ESN, despite the drastic reduction of
states in a typical system identification task. This work also showcased how
the nature of the excitation signal changes the singular value profile of the
SVD, concluding that lower-frequency input signals can result in more effi-
cient reductions. Ideally, the excitation signal should be as slow as necessary
to identify a system.

However, despite performing MC tests considering signals that carry in-
formation from all frequencies, the POD-reduced network performed better
than an ESN of the same size trained on the data. Arguably, the superior
performance of the POD-reduced ESN may be attributed to its ability to
emulate the behavior of the larger original ESN. Additionally, the increased
complexity of the reduced network, compared to an ESN of the same size,
could contribute to its enhanced performance.

These findings imply that applying POD to reduce the number of states
(reservoir size) of an ESN is an excellent strategy to obtain a smaller model
that behaves almost equivalently to the original one. However, some adap-
tation to the DEIM method may be necessary before it can be applied to
increase model efficiency further. Also, reducing the reservoir size using POD
has the advantage of interpretability since the states are sorted and pruned
according to the energy contribution metric. Finally, applying POD to an
ESN can show which linear combination of states contributes more signifi-
cantly to the ESN dynamic behavior.

For possible future work, we will test the developed POD-ESN model in
predictive control applications, comparing the performance of the reduced-
order model to its full-order counterpart. Further, there are applications in
reservoir computing, such as time series prediction problems, which could
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benefit from a reservoir reduction using the POD-ESN. Another direction
for future research is the study of ways to adapt DEIM to perform model
reductions more consistently.
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