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Abstract

Employed for artificial lifting in oil well production, Electrical Submersible Pumps
(ESP) can be operated with Model Predictive Control (MPC) to drive an optimal
production, while ensuring a safe operation and respecting system constraints.
Due to the nonlinear dynamics of ESPs, Echo State Networks (ESNs), a recurrent
neural network with fast training, are employed for efficient system identification
of unknown dynamic systems. Besides the synthesis of highly accurate prediction
models, this work contributes by designing two Nonlinear MPC (NMPC) strate-
gies for the control of an ESP-lifted oil well: a standard Single-Shooting NMPC
that embeds the ESN model completely, and the Practical Nonlinear Model Pre-
dictive Controller (PNMPC) that approximates the NMPC through fast trajectory-
linearization of the ESN model. Another contribution is the implementation of an
error correction filter to reject disturbances and counter modeling errors in both
NMPC strategies. Finally, in computational experiments, both ESN-based NMPC
strategies performed well in controlling simulated ESP-lifted oil wells when the
model of the plant is unknown. However, PNMPC was more efficient and induced
a similar performance to standard NMPC.
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1. Introduction

An oil well consists of tubing that enables the extraction of hydrocarbons from
a reservoir, lifting the fluids up to a platform for processing and storage (Jahn et al.,
2008). When an oil well is drilled in a young reservoir, the internal pressure is
sufficiently high to sustain the natural flow of fluids. As the oilfield matures, how-
ever, the pressure provided by the reservoir gradually diminishes, thereby raising
the need to implement artificial lifting techniques.

Artificial lifting is widely used to boost oil production in wells (Jahn et al.,
2008). Two notable forms of artificial lifting are gas-lift, and pumping systems
such as the Electrical Submersible Pump (ESP), which are implemented accord-
ing to the specific characteristics of the oilfield and well (Takacs, 2017). The
ESP consists of a multistage centrifugal pump embedded directly inside the well
(Pavlov et al., 2014), which contributes to oil lifting by introducing a positive
pressure differential upwards the vertical tubing of the well (Takacs, 2017). When
compared to other lifting methods, ESPs have the advantage of being efficient for
high production rates, working well in highly deviated wells. ESPs have a low
maintenance cost assuming no user fault, and small space requirements (Takacs,
2017).

However, ESPs are expensive to implement and demand a robust electric
power supply with high voltage when operating at high velocity. Among other
problems, gas suction can compromise the ESP efficiency, and abrasive materials
such as sand can easily damage the pump. ESPs are more likely to be taken out
of operation by catastrophic faults, instead of fatigue over time; however, factors
such as temperature, flow rate, vibration, and power consumption have an influ-
ence on the pump longevity (Binder et al., 2014). These issues, alongside the
aforementioned problems involving energy savings, pump efficiency drop, and
damage control, justify the deployment of an advanced control technique into
an ESP well. This automatic control will ensure an enhanced safe production
while imposing constraints that improve the ESP’s useful life (Binder et al., 2014;
Pavlov et al., 2014). This is very relevant when the number of ESP faults attributed
to human error was reduced from 80% to 23% after the operational constraints for
the ESP wells were implemented in industry (Centrilift, 2008).

Among the advanced control techniques, Model Predictive Control (MPC)
stands out as the ideal choice for operating an ESP-lifted oil well. MPC consists
generally of a prediction model of the plant, and an optimization problem describ-
ing the system operation which is solved to compute the control actions (Camacho
and Bordons, 1999). All the operational requirements for an ESP-lifted oil well
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can be implemented in the form of an optimization problem with constraints, such
as in Pavlov et al. (2014), where a Nonlinear Model Predictive Control (NMPC)
is implemented using a simplified, physics-based ESP model as the predictive
model. While an NMPC is efficient in controlling a plant, the controller needs to
solve an NLP (Nonlinear Programming) problem per time step, which tends to be
costly. An alternative solution to the application of a full NMPC is the so-called
Practical NMPC (Plucênio, 2013), denoted PNMPC, which uses a Taylor approxi-
mation of the nonlinear prediction model, making the computation of each control
action less expensive.

Oil production plants involve complex phenomena that are hard to capture in
a physical model, such as uncertainties associated with fluid production and other
structural uncertainties. Data-driven modeling is the process of obtaining a system
model through collected data, also called black-box system identification (Nelles,
2001). One of the main methods used in that context comes from models based
on neural networks (Salehinejad et al., 2017), which includes feed-forward neu-
ral networks with output feedback, Radial Basis Function networks (Ayala et al.,
2020), neuro-fuzzy models (Ouali and Ladjal, 2020) and Recurrent Neural Net-
works (RNN) (such as Long-Short Term Memory (LSTM) networks) (Salehinejad
et al., 2017).

Our work focuses on recurrent neural networks, considered as universal ap-
proximators to dynamic systems. They consist of an internal dynamics type model
(Nelles, 2001) that corresponds to a network with internal states (or memory).
Training in conventional RNNs involves calculating gradients of the loss function
with respect to the model parameters taking into account the evolving internal
dynamics. This is usually done through Backpropagation Through Time (BPTT)
(Mozer, 1995), which has numerical issues with vanishing or exploding RNN
gradients as deep networks do. Popular methods such as the LSTM mitigate that
problem by introducing specialized gates into the network structure (Salehinejad
et al., 2017). However, such approaches increase the structural complexity of each
network neuron, while still being trained through iterative nonlinear optimization
methods. Instead, our work employs Echo State Networks (ESN) (Jaeger et al.,
2007) to model dynamic processes, which is a type of RNN that provides an al-
ternative and more efficient solution to conventional RNNs.

Categorized under the Reservoir Computing paradigm (Schrauwen et al., 2007),
ESNs (Jaeger and Haas, 2004) are composed of two main layers: a recurrent non-
adaptive layer which represents a pool of rich nonlinear dynamics, called “dy-
namic reservoir.”; and a readout adaptive output layer which is a linear instanta-
neous combination of the dynamics from the fixed reservoir. System identification
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is achieved by training solely the memoryless output layer. As a result, training
can be achieved with algorithms such as Ridge Regression (Jaeger, 2001), or Re-
cursive Least Squares (RLS) (Jordanou et al., 2018). Assuming that the dynamic
reservoir is sufficiently rich, a large number of different nonlinear systems can
be identified, qsuch as learning complex goal-directed robot behaviors (Antonelo
and Schrauwen, 2015), grammatical structure processing (Hinaut and Dominey,
2012), short-term stock prediction (Lin et al., 2009), and noninvasive fetal detec-
tion (Lukoševičius and Marozas, 2014). Also, in Chen and Liu (2021), the ESN
serves as a basis for the prediction model of a wind speed time series, where it
is also coupled with tools such as reinforcement learning and real-time wavelet
packet decomposition.

In this work, ESNs are used with NMPC strategies to achieve control of un-
known nonlinear plants, more specifically, of ESP-lifted oil wells. We investigate
and compare full NMPC to PNMPC in successfully tracking the bottom-hole pres-
sure of such ESP-lifted oil wells in different experiments.

1.1. Related Works
Conceived by Pavlov et al. (2014), the ESP-lifted oil well model adopted in

this work was designed to serve as a simple simulator for testing MPC controllers
before deployment to real ESP plants. Such model provides a simplified model
concerning the pump energy transfer and pressure increase when compared to
works such as Yang et al. (2021b) and Yang et al. (2021a). These latter works de-
scribe the internal properties of the ESP in more detail, considering a three-stage
ESP and contributing with a model that describes the internal pressure pulsation.

Pavlov et al. (2014) also proposed a linear MPC to control such plants, using
the model as a simulation test, and then employing the controller in a real test-
ing facility. The implementation of one such MPC is reported by Binder et al.
(2014), where an MPC was implemented in a Programmable Logic Controller
(PLC), tested using the simulation model of Pavlov et al. (2014), and then in
the testing facility. Binder et al. (2015) used the very same model as a Moving
Horizon Estimator, which is a type of observer that minimizes the quadratic error
along a horizon of past measurements, serving as a counterpart to observers in
MPC. de A. Delou et al. (2019) states that the linear approximation of the model
varies significantly with changes in the choke opening of the ESP-lifted well, and
therefore develop an adaptive linear MPC, which applies a DMC controller that
has a dynamic matrix employing a linear combination of two different step re-
sponses, with a weighting parameter as a function of the choke opening. Except
for de A. Delou et al. (2019), all of the cited works implement a linear MPC to
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operate the same model of the ESP-lifted well. While linear MPC generally per-
forms well, having low computation time as the controller only needs to solve one
QP per time step, the linear model tends to lose precision in other operating points
if the plant is nonlinear, and the controller performance is compromised if system
behavior varies significantly depending on the operating region. The solution pro-
posed by de A. Delou et al. (2019) is a convex combination of the step response in
two opposite model regions. While the method was shown to perform well, there
is no guarantee that a convex combination of two different step responses is repre-
sents well the nonlinear model. In contrast, our ESN-based approach consists of
the use of a full nonlinear trained model, trading computational time performance
for model precision and improving control performance.

The literature on MPC combined with Neural Networks is vast. For instance,
Ławryńczuk (2014) presents a wide array of NMPC algorithms assuming differ-
ent types of neural networks as the prediction model, including but not limited to
Recurrent Neural Networks. His algorithms can be categorized under two main
approaches: those that solve the NMPC by using the exact prediction model; and
strategies that solve a QP by providing linear approximations of the neural net-
work model. One such controller employed in this work (Plucênio et al., 2007),
the Practical Nonlinear Model Predictive Control (PNMPC), was developed with
model linearization in mind, applying an error correction filter to help reject dis-
turbances and correct fine modeling errors. Our work differs from Plucênio et al.
(2007) in that they assume the analytical derivative to be unavailable. As we are
applying an ESN, we can easily obtain the derivatives analytically, through a re-
cursive algorithm that computes the Jacobian along the whole prediction horizon.

A recent example of NMPC with Echo State Network is found in Cao and
Huang (2020), where a variation of ESN (Echo State Gaussian Process) is pro-
posed as a black-box model for the NMPC of a Pneumatic Muscle Actuator.
Works of PNMPC and linearized MPC associated with ESNs are also found in
the literature, such as Pan and Wang (2012), which linearizes the ESN into a
state-space formulation. Xiang et al. (2016) employed a Taylor-linearized ESN
as a prediction model, while the full nonlinear ESN serves as an observer. This
topology implies a loss of precision when the system is far from the initially de-
signed operating point, and also the fact that they identify a nonlinear model for
what essentially is a linear MPC. In another work, Terzi et al. (2020) identified
several Recurrent Neural Network models for application in a linearized NMPC
to control the cooling system of a large business center.

Gros et al. (2016) compare linear to nonlinear MPC, postulating the so-called
Real-Time Iteration (RTI) concept. Because they use Sequential Quadratic Pro-
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gramming (SQP) for optimization, multiple QPs are solved by NMPC at each
sample time, whereas linear MPC demands the solution of just one QP. The Real-
Time Iteration consists in performing one iteration of SQP for NMPC, which is
similar to what PNMPC does in our work. The difference being that PNMPC per-
forms trajectory linearization over the free response, while RTI reduces the non-
linear system into a linear state-space system. The implication is that trajectory
linearization has full precision on the free response in relation to the full nonlinear
model. This same comparison with PNMPC also holds for Pan and Wang (2012),
which approximates the nonlinear ESN as a state-space linear model at each iter-
ation. Directly including the ESN states in an optimization problem has negative
implications to the computational time for solving QPs, which can become large
due to the number of ESN states.

Armenio et al. (2019) develop a stability condition for the ESN to be effective
in MPC (Input-State Stability), applying an NMPC for neutralizing pH in a sim-
ulated reactor. The main difference between the NMPC of Armenio et al. (2019)
and the NMPC in our work is that we employ an error correction filter, whereas
Armenio et al. (2019) use a Luenberger full-order observer for state correction,
which is more computationally demanding, since there are as many gains as there
are ESN states.

There are other works that apply Neural Networks for control outside the scope
of MPC, such as Jordanou et al. (2018), that deploys two ESN to perform plant
control by identifying the inverse model. Another one is Chang et al. (2004),
where a Feedforward Neural Network is designed as a model for adaptive control.
The Neural Network is combined with an Extended Kalman Filter approach for
parameter update.

1.2. Contributions
The contributions of this work are:

• A demonstration from a simulated case study that echo state networks can
be trained to model the dynamics of ESP-lifted oil wells directly from input-
output data, without prior knowledge on the system structure.

• The design of two NMPC strategies relying on the ESN modeling of the
plant, the first being a standard Single-Shooting NMPC that embeds the full
ESN model, and the second following the Practical NMPC approach which
relies on a linear approximation of the ESN model and fast computation of
sensitivities.
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• The derivation of the error correction filter used in PNMPC in state space,
and its inclusion in the Single-shooting NMPC formulation to correct mod-
eling errors and reject disturbances.

1.3. Paper Organization
Section 2 presents the ESP-elevated oil well and formalizes the control prob-

lem. Section 3 explains the Echo State Network. Section 4 describes the NMPC
strategies based on ESNs designed to solve the ESP control problem, namely the
Single Shooting NMPC and PNMPC. Section 5 reports on the experiments and
discusses the results from the system identification and NMPC of the well. Sec-
tion 6 draws conclusions of this work.

2. Electrical Submersible Pump in Artificial Lifting of Oil Wells

2.1. Mathematical Model
The mathematical model of the ESP-elevated Oil Well (depicted in Figure 1)

was developed by Pavlov et al. (2014), with some improvements by Binder et al.
(2015). It employs the average flow of a mixture as state, instead of taking into
account each phase flow. This makes the model simpler to compute and use in
control applications.

The ESP-elevated well is characterized by the following dynamic equations:

ṗbh =
V1

β1

(qr − q) (1a)

ṗwh =
V2

β2

(q − qc) (1b)

q̇ =
1

M
(pbh − pwh − ρghw −∆pf +∆Pp) (1c)

where pbh is the well bottom-hole pressure, pwh is the wellhead pressure, q is
the average liquid flow rate in the well, qr is the input flow rate originated from
the reservoir, qc is the flow rate at the production choke, ρ is the fluid density,
g is the gravity acceleration, and hw is the well height. The volumes V1 and V2

are the pipe volumes below and above the ESP, respectively, while β1 and β2

are the bulk modulus, which are fluid dynamics parameter that model the fluid
resistance to compression. The parameter M is the fluid inertia. The quantity
∆pf is the pressure loss due to friction, and ∆Pp is the pressure increase due to
pump dynamics.
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The input flow rate qr and the output flow rate qc are calculated as follows:

qr = PI(pr − pbh) (2a)
qc = Ccz

√
pwh − pm (2b)

where PI is the production index calculated for the reservoir, pr is the pressure
in the reservoir, z ∈ [0, 1] is the production choke opening, Cc is the choke valve
constant, and pm is the manifold pressure.

Figure 1: Schematic representation of an ESP lifted well, adapted from Binder et al. (2014).

The load loss due to friction is calculated as:

∆pf = F1 + F2 (3a)

Fi = 0.158
ρLiq

2

DiA2
i

(
µ

ρDiq

) 1
4

(3b)

where L corresponds to length, D to diameter, and A to the pipe cross-section
area. The index 1 corresponds to the section between the reservoir and the ESP,
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whereas index 2 corresponds to the section between the ESP and choke. The
parameter µ is the viscosity of the fluid.

The ESP pressure increase is calculated as:

∆Pp = ρgH (4a)

H = CH(µ)

(
c0 + c1

(
q

CQ(µ)

f0
f

)
− c2

(
q

CQ(µ)

f0
f

)2(
f

f0

)2
)

(4b)

where c0, c1 and c2 are pump constants, CH and CQ are constants dependent on
the viscosity, f0 is the nominal frequency of the pump, and f is the pump rotation
frequency.

The control inputs for this system are the production choke opening z and the
ESP frequency f . Table 1 presents the model parameters of the ESP-lifted oil
well.
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Table 1: Well dimensions and other known constants
Symbol Name Value Unit

g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
A1 Cross-section area of pipe below ESP 0.008107 m2

A2 Cross-section area of pipe above ESP 0.008107 m2

D1 Pipe diameter below ESP 0.1016 m
D2 Pipe diameter above ESP 0.1016 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

f0 ESP characteristics reference freq. 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus below ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s
Pm Manifold pressure 20 Pa

2.2. Problem Statement
As one can see, the model described by the state equation system (1) is a

simplified and lumped model for the ESP which is used as a reference in this
work. In fact, models for offshore oil production are not very accurate (Jahn et al.,
2008), since the composition of the fluid coming from the reservoir is actually
not well known, which heavily affects the structure of the equations. However,
models such as (1) can capture the fundamental behavior of this type of process.

The first problem is to identify a black-box model of dynamical interactions
between relevant variables for the NMPC of the ESP-equipped oil well, which
is represented in this work by the numerical simulation of (1). In this case, we
want to identify the manipulated variables of the well as inputs to the model, to
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which end we gather data from the pump rotation frequency f and the valve choke
opening z. As outputs, we utilize the system states: the bottom-hole pressure pbh,
the wellhead pressure pwh, and the average flow rate of the fluid q, as they are
quantities of interest in the model. There are many possible black-box models in
the literature (Nelles, 2001), including Recurrent Neural Networks (Schmidhuber,
2015). We chose Echo State Networks as a black box model because of their ease
to train and high capability of approximating nonlinear dynamic systems. ESNs
are explained in the next section.

The next step is to employ the trained ESN as the model for an NMPC prob-
lem that minimizes a certain objective function while respecting operational con-
straints so that the ESP operational lifespan increases (Takacs, 2017). In this
work, we consider the constraints that were applied by Pavlov et al. (2014). Due
to physical limitations, the choke valve opening z is constrained between 0% and
100% and the ESP frequency must range from 35 Hz to 65 Hz. As for the sys-
tem outputs, the constraints consist of bounds on the bottom-hole pressure, well-
head pressure, and liquid flow, respectively 0 ≤ pbh, 1 bar ≤ pwh ≤ 60 bar, and
30m3/h ≤ q ≤ 50m3/h. The objective function in this work is the quadratic
error of the tracking outputs when compared to their reference signals, over a
given prediction horizon Ny, and the variation on control input signals over a con-
trol horizon Nu. When expressed mathematically, these constraints, together with
the objective function, lead to the following optimization problem to be solved at
discrete time k:

min
∆U

J(y[k],u[k],∆U) (5a)

s.t. : 1Nu ⊗ (umin − u[k]) ≤ (TNu ⊗ Im)∆U ≤ 1Nu ⊗ (umax − u[k]) (5b)
1Ny ⊗ ymin ≤ Y ≤ 1Ny ⊗ ymax (5c)

where ⊗ is the Kronecker product, which is used in this formulation as a broadcast
operator, namely (1n ⊗ a) means that the resulting vector is a replicated n times,
which corresponds to the number of rows in 1n. The same holds for the Kronecker
product (TNu ⊗ Im). As TNu is a lower triangular matrix of size Nu filled with
ones, the resulting matrix from the Kronecker product is a block-triangular matrix
with non-zero block-elements being equal to Im, with m = 3 being the number
of manipulated variables. In the formulation above, y[k] is the system output at
the current time k and u[k] is the initial control signal. The actual control signal
to be applied over the control horizon is a function of u[k] and the vector ∆U of
control increments. Notice that ∆U is the vector of decision variables.
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The remainder of the functions and variables in problem (5) are:

∆U =


∆u[k]

∆u[k + 1]
∆u[k + 2]

...
∆u[k +Nu − 1]

 , Y =


y[k + 1] = g(x[k + 1])
y[k + 2] = g(x[k + 2])
y[k + 3] = g(x[k + 3])

...
y[k +Ny] = g(x[k +Ny])

 , (6a)

u[k + 1] = u[k] +∆u[k], u =

(
z
f

)
, umin =

(
0
35

)
, umax =

(
100
65

)
(6b)

y =

pbh
pwh

q

 , ymin =

 0
1
30

 , ymax =

∞
60
50

 (6c)

which lead to the objective function

J(y[k],u[k],∆U) = (Y −Yref )
T (INy ⊗Q)(Y −Yref )

+∆UT (INu ⊗R)∆U (6d)

with Q being weights for the reference tracking error and R weights imposed on
the control variation, to prevent abrupt changes in the control action. Vector x
refers to the system state, and g(·) is a static function that maps the states to the
output. If the system defined in (1) is used as the prediction model, then x = y, in
which case g(·) is the identity function. However, this is not always the case, as a
reliable prediction is not always available. Such a case is assumed for this work.
Strategies for solving the NMPC, such as the pure NLP-solving NMPC method
and the PNMPC strategy, will be explained in Section 4.

3. Echo State Networks

According to Jaeger et al. (2007), the ESN is a recurrent neural network ar-
chitecture that retains the same nonlinear system approximation capability of an
RNN, while employing only a linear least squares algorithm as training. ESNs
were conceived by Jaeger (2001) as a specialized form of the broader Reservoir
Computing framework (Jaeger et al., 2007). Reservoir Computing (RC) is referred
to as such because the network architecture consists of a dynamic, randomly ini-
tialized, untrainable layer, and a static layer that can be trained by least squares.
The dynamic layer is referred to as a dynamic reservoir, as it must have a large
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Figure 2: Representation of an Echo State Network. Solid connections (from Reservoir to Output
Layer) are trainable, while dashed connections are fixed and randomly initialized.

pool of distinct dynamics, while the network output imitates a real system through
a linear combination of these dynamics, represented by the static output.

The following equations describe the dynamics of the ESN:

x[k + 1] = (1− γ)x[k] + γf(Wrx[k] +Winu[k] + b) (7a)

y[k + 1] = Woutx[k + 1] (7b)

where: the reservoir state is given by x[k], the network input is u[k] and the
output is y[k]; γ ∈ (0, 1] is called leak rate (Jaeger et al., 2007), which is the
percentage of the current state x[k] transferred into the next state x[k + 1]; the
weights Wr,Win,b and Wout are the reservoir, input, bias and output weights,
respectively; and f = tanh(·) is the activation function for each reservoir neuron,
also called a base function in system identification theory being widely used in the
literature (Nelles, 2001). Figure 2 depicts the schematic of an echo state network.

The network has N neurons, which is the dimension of x[k] that must be sev-
eral orders higher than the number of network inputs. As long as the training is
regularized, N can be as large as needed, but at the expense of increased compu-
tation time of the model.

The procedure for training an ESN is (Jaeger et al., 2007):

1. Every weight of the network is initialized from a normal distribution N (0, 1).
2. Wr is scaled so that its spectral radius ρ (Eigenvalue with the largest mod-

ule) is at a certain value which is able to create reservoirs with rich dy-
namical capabilities. Having |ρ| < 1 is a rule of thumb that works well in
most cases, which also means that the linear expression inside the activation
function induces a stable dynamic system (Jaeger et al., 2007).
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3. Win and b are multiplied by scaling factors f r
i and f r

b , respectively, to
determine how the input will influence the network. The scaling parameters
ρ, f r

i , and f r
b are crucial in the learning performance of the network, which

have an impact on the nonlinear representation and memory capacity of the
reservoir (Verstraeten et al., 2010).

4. After all the non-trainable dynamic weights are defined, what is left is to
obtain Wout through Ridge Regression (Bishop, 2006). First, we run the
dynamic part by entering the input data u[k] sequentially. Afterwards, we
concatenate the set of state vectors reached by the ESN in a matrix:

X =


x[0]T

x[1]T

...
x[Nd]

 (8)

Then, with the output data matrix D that concatenates each desired output
the same way, we calculate the output weights as follows:

Wout = (XTX+ λI)−1XTD (9)

where λ is the regularization parameter which helps avoid overfitting.

4. Nonlinear Model Predictive Control

This section elaborates further on solution strategies employed to solve prob-
lem (5), which is a Nonlinear Model Predictive Control problem (Camacho and
Bordons, 1999). Model Predictive Control refers to the use of a predictive model
(in our case, the ESN) to anticipate the plant response and calculate the control ac-
tion according to some optimization problem, such as (5) (Camacho and Bordons,
1999).

There are several MPC strategies in the literature that are generally defined
by their prediction model, the strategy for disturbance treatment, and the methods
for solving the optimization problem at hand (Camacho and Bordons, 1999). The
universe of linear MPCs is already very well defined and well solved (Camacho
and Bordons, 1999), whereas nonlinear MPC tends to be more challenging, as
one must solve a nonlinear optimization problem at each time step to compute the
control action.

Figure 3 depicts the schematic of a generic MPC controller actuating on an
ESP-lifted oil well. The optimizer block refers to the solution process of problem
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Figure 3: Representation of a generic NMPC controller using an ESN model to control an ESP-
lifted oil well.

(5) that depends on two kinds of information: (i) the reference trajectory, which
determines how the variables of interest in the system should behave; (ii) the pre-
dicted output over the horizon given a feasible input sequence, which lies within
the set defined by the constraints. How exactly the model is designed and the
optimizer implemented depends on the MPC strategy of choice.

In this work, we apply two different strategies for NMPC using an Echo State
Network as the prediction model: (i) the pure solution of problem (5) following
the Single Shooting (SS) strategy, and (ii) the Practical Nonlinear Model Predic-
tive Control (PNMPC) strategy, as presented in (Jordanou et al., 2018).

4.1. Direct Single Shooting NMPC
The first strategy we explore consists of simply solving problem (5) directly.

We assume the model to be the ESN itself and develop a formulation of the prob-
lem based on the concept of Single Shooting for a discrete-time dynamic system.

Single Shooting (SS) (Bock and Plitt, 1984) is a receding horizon strategy for
solving optimal control problems such as (5). A shooting, in this context, is a
simulation run given a certain input function (in continuous time) or, in the case
of this work, a sequence in discrete time that yields a piecewise-constant control
input. Because the SS method has only one shooting, all the outputs over the
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horizon are analytically bound to each other, leaving the ESN states as interme-
diate variables depending on a given control input sequence of u[k]. In contrast,
the multiple shooting method works with multiple system simulations, and each
shooting has a respective initial condition defined by a decision variable in the
optimization problem. In the context of ESN modeling, due to the large number
of states, multiple shooting entails manipulating an excessively large number of
decision variables and constraints in relation to the baseline problem. Also, as the
ESN and the ESP-lifted well in this work are stable dynamical systems, SS is a
valid choice to solve the optimization problem.

With single shooting in mind, and applying the ESN as a prediction model,
the optimization problem (5) becomes:

min
U

Ny∑
i=1

∥Woutx[k + i]− yref∥Q +
Nu−1∑
j=0

∥∆u[k + j]∥R (10a)

s.t. : 1Nu ⊗ (umin − u[k]) ≤ (TNu ⊗ Im)∆U ≤ 1⊗ (umax − u[k]) (10b)
∆Umin ≤ ∆U ≤ ∆Umax (10c)
ymin ≤ Woutx[k + i] ≤ ymax, ∀i = {1, 2, . . . , Ny} (10d)

x[k + i] = f (i)(x[k],U), i = 1, . . . , Ny (10e)

in which the state prediction x[k+i] for time (k+i) is calculated with the nonlinear
operator f (i), defined by applying the ESN state-transition function recursively, as
a function of the ESN state x[k] at the current time and the control sequence
U = (u[k + i] : i = 1, . . . , Nu). More concretely,

x[k + 1] = f (1)(x[k],U)

= (1− γ)x[k] + γf(Wrx[k] +Winu[k] + b) (11a)

x[k + 2] = f (2)(x[k],U)

= (1− γ)f (1)(x[k],U)

+ γf(Wrf (1)(x[k],U) +Winu[k + 1] + b) (11b)
... =

...

x[k +Ny] = f (Ny)(x[k],U)

= (1− γ)f (Ny−1)(x[k],U)

+ γf(Wrf (Ny−1)(x[k],U]) +Winu[k +Nu] + b) (11c)

Notice that the ESN plant model is embedded in the nonlinear operators f (i),
which renders the Single Shooting formulation (10) a Nonlinear Programming
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(NLP) problem. Solving this problem to global optimality is not practical though,
given the highly nonlinear and recursive structure of the ESN. Thus one contends
with a local optimum that can be reached with standard NLP algorithms.

In the formulation (10), the predicted intermediate and final state of the plant
are direct functions of the initial condition x[k], and the control sequence U over
the control horizon. Unlike SS, Multiple Shooting (MS) does not rely on function
composition and instead defines the intermediate state variables as decision vari-
ables. Single shooting was favored with respect to multiple shooting due to the
high dimensionality of the resulting decision space.

There is a disadvantage of controlling a plant by solving the NMPC problem
(10): the method is essentially open-loop, as information on the real plant is not
used to compute the control action. Although this means that the control trajectory
could be computed offline, the controller is not able to treat disturbances and
modeling errors, which elicits the need of improving this strategy with regards to
this aspect. To counter the open-loop limitation, a strategy based on filtering is
presented in what follows.

4.2. Disturbance Treatment and Error Correction Filter
Several ways to deal with modeling errors and disturbance rejection are found

in the MPC literature (Camacho and Bordons, 1999). In this work, the error be-
tween the output predicted by the ESN and the actual plant output is integrated
and then filtered, with the result being added as a constant correction factor over
the horizon, as done in (Plucênio et al., 2007; Jordanou et al., 2018).

Now, from the point of view of the optimization problem, the nonlinear model
is represented as:

x[k + i+ 1] = f(x[k + i],u[k + i]) (12a)
y[k + i] = g(x[k + i]) + δ[k] (12b)

with δ[k] being the aforementioned correction factor.
This formulation assumes that the modeling error is constant along the whole

horizon, which is a reasonable assumption for error correction that spares the MPC
from accounting for future disturbances. The correction factor is always updated
before the calculation of the control action, and obeys the following law:

δ[k] = δ[k − 1] +K∆δ[k] (13a)
∆δ[k] = (1− ω)(ym[k]− ŷ[k|k − 1]) + ω∆δ[k − 1] (13b)

ŷ[k|k̂] = yp[k] + δ[k̂] (13c)
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where K is integrator gain, ω is the filter cutoff rate, yp is the output calculated
by the model (in this case, the ESN), ym is the measured output, and k̂ is a time
index that could be k or k − 1. As seen from equation (13a), the correction factor
works in a closed-loop fashion as it depends on values of δ at previous time steps.
After calculating δ[k], the corrected predicted output ŷ[k|k] is what essentially
goes into the NLP that corresponds to MS formulation (10). Then the next model
output prediction and output measurement are given, respectively yp[k + 1] and
ym[k + 1], and the correction factor calculation procedure (13) is repeated after
the control action is obtained.

It can be shown that the recursive calculation of δ[k] leads to zero bias er-
ror. First, we define the prior error (before adding the correction factor into the
prediction) and posterior error (after correction) of the MPC as:

ϵ[k] = ym[k]− yp[k] (14a)
e[k] = ym[k]− ŷ[k|k − 1] (14b)

From (28) and (13c) with k̂ = k − 1, the following equation relates ϵ[k] to
e[k]:

e[k] = ϵ[k]− δ[k − 1] (15)

Then, we express (13) in terms of e[k]:

δ[k] = δ[k − 1] +K∆δ[k] (16a)
∆δ[k] = (1− ω)e[k] + ω∆δ[k − 1] (16b)

Finally, we replace e[k] given by Eq. (15) in (16b) to obtain:[
δ[k]
∆δ[k]

]
=

[(
1 K

(ω − 1) ω

)
⊗ I

] [
δ[k − 1]
∆δ[k − 1]

]
+

[(
0

1− ω

)
⊗ I

]
ϵ[k] (17)

which is the state space form of the filters, with ϵ as the input and I as an identity
matrix with matching dimension for δ. For univariate systems, the Kronecker
product could be dropped. We now calculate the steady state for (17):[

δ
∆δ

]
=

[(
0 −K

1− ω 1− ω

)−1(
0

ω − 1

)
⊗ I

]
ϵ (18)
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which clearly results into: [
δ
∆δ

]
=

[(
1
0

)
⊗ I

]
ϵ (19)

The posterior error is fully compensated at steady state only when the δ equals
the prior error, δ = ϵ, given that (19) guarantees zero constant posterior error
e = δ − ϵ at steady state.

Therefore, the filter is capable of compensating any amount of constant prior
error, as long as the system in (17) is stable, which can easily be attained by tuning
ω and K accordingly.

4.3. Practical Nonlinear Model Predictive Control
While using the full nonlinear model yields reliable responses for the calcu-

lated optimal control action, NLPs tend to be computationally costly to solve.
One possible solution to ease the complexity of the MPC problem, which might
be convenient for real-time applications, is through Taylor’s series linearization of
the nonlinear model. The Practical Nonlinear Model Predictive Control (PNMPC)
(Plucênio et al., 2007) is an MPC strategy developed with this simplification in
mind. The filter introduced in the previous section is used here and the model is
approximated into a linear counterpart so that, instead of an NLP, the problem to
be solved at each time step is a Quadratic Programming (QP) problem, which is
much less computationally expensive.

Consider the generic discrete-time nonlinear system, such as the ESN, placed
into MPC terms:

x[k + i] = f(x[k + i− 1],u[k + i− 1]) (20a)
y[k + i] = g(x[k + i]) (20b)

u[k + i− 1] = u[k − 1] +
i−1∑
j=0

∆u[k + j] (20c)

Through a Taylor’s series approximation, the system can be expressed as:

Ŷ = G ·∆U+ F (21)

where F is the free response and G is the sensitivity matrix that models the forced
response, which have the following forms:
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F =


g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k +Ny − 1],u[k − 1]))

+ 1⊗ δ[k] (22a)

G =


∂y[k+1]
∂u[k]

0 . . . 0
∂y[k+2]
∂u[k]

∂y[k+2]
∂u[k+1]

. . . 0
...

... . . . ...
∂y[k+Ny ]

∂u[k]

∂y[k+Ny ]

∂u[k+1]
. . . ∂y[k+Ny ]

∂u[k+Nu−1]

 (22b)

the free response F is corrected according to the correction factor δ, which is
in turn calculated by filtering the prediction error.

Notice that the system is linearized only with respect to the input. Therefore,
while F is computed nonlinearly by assuming that the control action u[k − 1]
remains constant, the forced response is computed by multiplying G, a sensitivity
matrix containing the system’s Jacobians, with the control increment vector ∆U
along the horizon, which is what reduces the MPC problem to a QP.

The calculation of F is straightforward, as it merely requires direct function
evaluation and the correction factor calculation. However, the calculation of G is
another matter. Early works assumed unattainability of the Jacobians (Plucênio
et al., 2007) and employed a finite-difference scheme, which could lead to high
computational complexity for multivariate systems. In this work, where a known
state equation model (the ESN) is available, the controller employs the following
recursive strategy by using the chain rule:

∂y[k + i]

∂∆u[k + j]
=

∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(23a)

∂x[k + i]

∂∆u[k + j]
=

∂f

∂∆u[k + j]
+

∂f

∂x[k + i− 1]

∂x[k + i− 1]

∂∆u[k + j]
(23b)

Then, the computation of each block-element in G, with row i and column j,
is as follows:

Gij =
∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(24a)

∂x[k + i]

∂∆u[k + j]
=


B(i− 1) +A(i− 1)∂x[k+i−1]

∂∆u[k+j] i > j

B(i− 1) i = j

0 i < j

(24b)
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where B(i − 1) is the Jacobian of f at state x[k + i − 1] with respect to u, and
A(i− 1) is the Jacobian of f with respect to x[k + i− 1].

The computation is done per row i, where row i+1 depends on values for row
i, and i = 1 only calculates B(0), which is the Jacobian ∂u[k−1]f about x[k], for
the first element.

Given an ESN, the respective derivatives to calculate the Jacobian are:

∂g

∂x
= Wout (25a)

J(i) =
∂f

∂zi
Win (25b)

S(i) = (1− γ)I+ γ
∂f

∂zi
(Wr) (25c)

zi = Wrx[k + i] +Winu[k − 1] + b (25d)

By applying (21) to the optimization problem (5), the resulting problem be-
comes the QP:

min
∆U

J(∆U) = ∆UTH∆U+ cT∆U (26a)

s.t. : I∆U ≤ ∆Umax (26b)
−I∆U ≤ −∆Umin (26c)
T∆U ≤ 1umax − 1u[k − 1] (26d)

−T∆U ≤ −1umin + 1u[k − 1] (26e)
G∆U ≤ 1⊗ ymax − F (26f)

−G∆U ≤ F− 1⊗ ymin (26g)

where:

H = GTQG+R (27a)

c = 2GTQT (Yref − F) (27b)

In this formulation, a rate-limiting constraint is added so that the Taylor ap-
proximation prediction does not lose precision, as the linear approximation is al-
most an equivalence for small control increments.

With this, the PNMPC successfully reduces the NMPC problem to a mere QP,
while being quite robust (Plucênio, 2013).
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5. Experiments and Results

This section showcases the experiments regarding the control of an ESP-lifted
oil well with the Single-Shooting NMPC and the ESN-based PNMPC presented
above. A discussion on the results obtained from these experiments follows.

5.1. Implementation
The ESP-lifted oil well was implemented using CasADi (Andersson et al.,

2019), whereas the Python libraries numpy and scipy were used to implement
both the Echo State Networks and controllers (NMPC and PNMPC). NMPC was
implemented with CasADi and solved with IPOPT (Mehrez, 2019), whereas PN-
MPC was coded in native Python and solved with CVXOPT (Dahl and Vanden-
berghe, 2020). The results were displayed using the Matplotlib library. A sam-
pling time of Ts = 1/12 s was used for the application, based on a simple step-test
of the system. The experiment was done entirely in a personal desktop possessing
8 GB RAM, with an AMD Ryzen 5 1400 Quad-Core Processor, that operates in
3.2 GHz. No GPU was used in the simulation and/or training.

5.2. Metrics and Experimental Setup
The experiments for the control of the ESP-lifted oil well, with an ESN as the

prediction model, are divided into two phases: (i) the identification of the ESP
using the ESN as a model; and (ii) a comparative study of each method applied to
the MPC problem of the ESP-lifted oil well.

For the identification part: first, a dataset is obtained from a single simulation
run of the system, which is then divided into a training/cross-validation phase
and a testing phase. The excitation signal must be able to capture the system
behavior at the working operation zone (Nelles, 2001), being a critical part of
the system identification procedure. Afterwards, the hyperparameters are set so
that the ESN achieves sufficiently good performance while taking into account the
computational cost. The key metric to evaluate the ESN performance at a given
dataset is the Normalized Root Mean Square Error (NRMSE) defined as:

NRMSE =

√√√√ 1

N

N∑
k=0

∥∥∥∥y[k]− yESN[k]

ymax − ymin

∥∥∥∥2 (28)

where y[k] is the plant output and yESN[k] is the ESN predicted output at time k,
ymin and ymax define the bounds on outputs, and N is the number of samples. As
the ESN is normalized using the maximum and the minimum point in the dataset
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(and also compared against normalized data), the denominator for (28) can be
dropped.

For the next step, the two MPC methods (Direct SS NMPC and PNMPC) are
applied to the control of the ESP. As the two methods solve essentially the same
optimization problem, they are tested under the same parameters for Q and R,
along the same horizon. Their performance is compared through the IAE (Integral
Absolute Error) of each variable:

IAE =
N∑
k=0

|y[k]− yref| (29)

where y is the variable of interest (an element of the output vector y). The IAE
serves as a metric on how well a controller performs within a given simulation.
Being a sum of absolute errors, the IAE has a high magnitude and, as such, it is
widely used for comparison between different controllers.

With respect to a single variable, the control variation serves as a measure of
the controller conservativeness:

∆utot =
N∑
k=0

|∆u[k]| (30)

The higher the total control variation, the higher the energy spent by the controller
in changing the manipulated variable.

5.3. Identification of ESP-lifted Oil Wells
The first step toward model identification regards the design of the excitation

signal which, for this work, consists of an Amplitude-modulated Pseudo-Random
Binary Signal (APRBS) (Nelles, 2001), which is a stair signal with values drawn
from the uniform distribution. The APRBS signal has a minimum period of 5
time steps (5/12 s) at the first half of the dataset, and a minimum period of 40
(40/12 s) steps for the rest of the simulation. The signal amplitude obeys the
upper and lower bound for both frequency f and choke opening z. By following
this variation in the control frequency, the first half of the simulation is focused
on identifying transients and responses to subtle variations in the control action,
while the second half focuses on lower frequencies and the steady state.

Figure 4 showcases the APRBS excitation input signal used to generate the
dataset. The signal is 12, 000 time steps (1, 000 s) long, with values ranging from
(zmin, fmin) = (0.1, 35) to (zmax, fmax) = (1.0, 65) with respect to the choke
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Figure 4: APRBS excitation signal utilized to generate the dataset by inputting it into the ESP-
lifted well.

opening and pump frequency variables, respectively. The initial condition for the
system was pbh = 70 bar, pwh = 20 bar, and q = 36 m3/h. Starting from these
initial conditions, the output signal for pbh, pwh and q is obtained directly and
deterministically by simulating the well model with the input sequence in Figure
4, which is not shown for simplicity reasons. Thus, the 2-dimensional excitation
input signal along with the desired 3-dimensional output signal form the training
dataset for the identification task. An APRBS signal of 300 time steps was used
as an excitation signal for a validation set, distinct from the training dataset shown
in Figure 4.
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Table 2: NRMSE on the validation set for varying reservoir sizes of the ESN
Neurons NRMSE Average Runtime

50 0.129 0.39 s
100 0.116 0.40 s
150 0.112 0.45 s
200 0.109 0.51 s
250 0.107 0.60 s
300 0.106 0.63 s
350 0.107 0.69 s
400 0.106 0.73 s

Table 2 showcases the results from an experiment that aimed to assess the im-
pact of the number of neurons on ESN performance. The performance improve-
ment achieved in ESNs with more than 300 neurons was not significant, while the
computation time increased almost linearly, which led us to select 300 reservoir
states for the echo state network.

Table 3: Hyperparameters used in the ESN
Parameter Value

Leak rate (γ) 0.14
Size of the reservoir (N ) 300
Spectral radius (ρ) 0.99
Input scaling (f r

i ) 0.1
Bias scale (f r

b ) 0.1
Warmup drop 200

The other parameters besides the number of neurons were decided using a
grid search procedure separately, with each configuration being simulated once,
leading up to the values for hyperparameters shown in Table 3. The leak rate γ is
expected to be small because of the system settling time is longer when compared
to the sampling time. The warm-up drop parameter is the number of training
points, at the beginning of the dataset, that are dropped so that the ESN least
squares does not calculate the weights using transient states. A regularization
parameter of λ = 10−8 was found via a 10-fold cross-validation (CV) using the
training set.

Also, we trained a 128-unit Long Short-Term Memory (LSTM) and a 64 Gated
Recurrent Unit (GRU) network, using the same training data as the ESN, to com-
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Figure 5: Prediction of the ESN, LSTM, and GRU on test data in comparison to the ESP plant
(blue dashed line) given the test excitation signal. The first plot presents the bottom-hole pressure
pbh, the second plot, the wellhead pressure pwh, and the third plot, the flow. The fourth plot is the
NRMSE at the given time-step.

pare their performance against the ESN in identifying the ESP-lifted oil well. By
means of a grid grid-search, the number of cells for the LSTM and GRU were
chosen so that each network achieves satisfactory performance on identifying the
ESP-lifted well. Both networks were trained with the Adam algorithm, with a
batch size of only one timestep (where BPTT takes into account the derivative
calculation in the previous batch), and a learning rate of 0.001. These parameters
were the ones that performed best in the series of experimental tests done with
both networks. The stop criteria was the loss function (mean squared error) not
decreasing for 10 epochs, indicating that the network weights had reached a local
minimum in the optimization problem.

The test data consists of 1000 time steps. Figure 5 regards simulations on
this test data, showing both the solution of the differential equations that govern
the ESP-lifted oil well (desired output data) and the three identified models. The
simulations show that the ESN captures best the system dynamics, which therefore
can be used as a surrogate model for the MPC strategies. Notice that the ESN
response is the closest signal to the output data, as illustrated by the NRMSE
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curves depicted in Figure 5. Also, Table 4 compares the three networks in terms
of execution time, NRMSE and epochs needed to conclude training. The results
there showcase that the ESN is a suitable choice as the training is faster (linear
least squares solution vs stochastic gradient descent for nonlinear least squares
problem), and it performs better in terms of NRMSE.

Table 4: Comparison of ESN model with LSTM and GRU for ESP-lifted well identification on
test data.

NRMSE Training Epochs Training Time (s)
ESN 0.0135 - 106.89

LSTM 0.0295 20 1438.11
GRU 0.0508 33 1649.82

5.4. ESN-based MPC for ESP-lifted Oil Wells
This section showcases control problems involving the ESP-lifted oil well.

Each problem regards different settings for controlled variables, which must track
a reference signal, and settings for manipulated variables. Both the Single-Shooting
ESN-NMPC and the ESN-PNMPC solve each proposed problem, with precisely
the same parameter values.

The problems are defined as follows:

1. With the choke opening fixed at z = 1 (fully open), the pump frequency f is
manipulated to track the reference signals for the well bottom-hole pressure
(pbh), while adhering to the constraints imposed by the problem defined in
(26). We also perform a disturbance rejection experiment in the reservoir
pressure (a variation of ∆pr = −10 bar from the original parameter value)
for this specific control problem, to demonstrate the performance of the
error-correction filter.

2. Both the choke opening z and pump frequency f serve as manipulated vari-
ables. This time, the controller tracks a reference signal for pbh, while max-
imizing the production flow q. Instead of including the maximization of the
flow q directly into the cost function, we set a constant reference signal for
q at a sufficiently high level for the system in a way that, although unreach-
able, this reference causes the controller to maximize production within the
same reference-tracking MPC setting defined in (26).

Notice that, when the controller must track the reference for a given variable, the
constraint associated with that variable does not hold for the problem at hand.
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Figure 6: Results of the experiment for the bottom-hole pressure tracking induced by both the SS
ESN-NMPC and the ESN-PNMPC. The first plot regards the bottom-hole pressure, the second
plot shows the oil flow q, and the third plot presents the manipulated variable: the pump frequency
f .

5.4.1. Bottom-hole pressure tracking with pump frequency manipulation
We now present the results from the experiments regarding the tracking of the

bottom-hole pressure pbh by manipulating only the pump frequency f . For this
problem, the parameters set for each controller were:

Q = 0.7 (31a)
R = 5 (31b)
K = 1/3 (31c)
ω = 0.25 (31d)

∆Umax = −∆Umin = 0.2 (31e)

Figure 6 presents the results associated with the tracking of the bottom-hole
pressure by manipulating the pump frequency. It shows the response of both con-
trollers given a pbh reference signal. Although the pure Single-Shooting NMPC
shows slightly better performance in terms of settling time, the PNMPC is more
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conservative in its control signal. For small variations of the control action, both
controllers generate similar outcomes, which can be explained by the fact that the
PNMPC can be seen as a quadratic approximation of the NMPC solution. Also,
the PNMPC requires considerably less time to run, which is remarkable given
that the standard NMPC relies on advanced software with automatic differentia-
tion and an NLP solver, whereas PNMPC uses just a QP solver and the simple
recursive algorithm for derivative calculation.

Table 5: Metrics for each controller in the bottom-hole pressure tracking problem.
ESN-NMPC ESN-PNMPC

IAE (pbh) [bar] 553.97 712.46
∆utot [Hz] 34.29 31.72

Mean execution time [s] 1.19 0.35
Worst execution time [s] 1.73 0.87

Table 5 better illustrates the results in terms of IAE, the total control variation,
the mean execution time of the control law calculation at a given time step, and
the worst execution time of a time step inside the simulation. The NMPC displays
superior IAE, while the PNMPC is more conservative (∆utot) and more efficient
in terms of execution time, by a factor of more than 3 on average. Seeing the PN-
MPC as an approximation to the NMPC, we computed the relative error between
the control action of each controller REMPC (the solution to their respective op-
timization problems):

REMPC =
N∑
k=1

∣∣∣∣uPNMPC [k]− uNMPC [k]

uNMPC [k]

∣∣∣∣ = 0.06, (32)

where N is the total number of time steps. Such a value for REMPC demonstrates
that the trajectory linearization of the PNMPC serves well as an approximation to
the NMPC for ESNs, considering this specific type of MPC problem where con-
straints are not being violated. Notice that the decision variable in the PNMPC is
the control increment, while in the NMPC it is the control action itself. Therefore,
the NMPC calculates a new control action at each time step, and the PNMPC ap-
proximates the problem given the previous control action and outputs, computing
an incremental approximation to the whole NMPC.

We also performed a disturbance rejection experiment on this control prob-
lem, by injecting a disturbance ∆pr that decreases the reservoir pressure in 10
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Figure 7: Results of the experiment for the bottom-hole pressure tracking with disturbance rejec-
tion induced by both the SS ESN-NMPC and ESN-PNMPC. The first and the second plots show
the bottom-hole pressure tracking by PNMPC and NMPC, respectively. Both plots have a blue,
thick line representing the controller with a filter, and a green line for the controller without a
filter. The third and fourth plots are the pump frequency for PNMPC and NMPC respectively. The
time instant where disturbance on the reservoir pressure pr takes place is shown as a vertical cyan
dashed line at timestep 400.

bar midway in the simulation. Each controller performs reference tracking un-
der the same reference signal as the no disturbance simulation. Two cases were
considered: both controllers with and without the presence of the error correction
filter.

Figure 7 demonstrates the result of said experiment, where the effect of the
prediction filter in the control loop is clearly shown. The −10 bar disturbance in
the reservoir pressure induces a modeling bias in the ESN, which is why a constant
error is present in the non-filtered counterpart of the controllers. Meanwhile, both
controllers with the filter managed to bring the bottom-hole pressure to the desired
reference, with a slightly lower peak for the NMPC. A slight reference error is
also present for the non-filtered controllers before the disturbance is applied, as
the ESN is not an exact model of the ESP-lifted oil well.
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5.4.2. Bottom-hole pressure tracking with target oil production
For the second proposed problem, where the controller tracks a reference sig-

nal for the bottom-hole pressure while approaching an unattainable production
flow target to maximize oil production, the parameters utilized are:

Q =

(
0.7 0
0 0.1

)
(33a)

R =

(
3 0
0 5

)
(33b)

K = 1/3 (33c)
ω = 0.25 (33d)

∆Umax = −∆Umin = 0.21 (33e)

Notice that in this formulation, the parameters related to f and the error for pbh
are the same as in the previous problem. In this formulation, u = (z, f)T and
yref = (prefbh , qref )T .

Figure 8 showcases the results of the experiments. We see that pbh tracking
is hindered by the need to bring the flow as close as possible to qref = 55 m3/h
(red horizontal dashed line). Besides, for this experiment, the control action of
the controllers differs from each other more significantly, i.e., PNMPC’s control
action varies more than NMPC’s one. The NMPC seems to prioritize produc-
tion more than the bottom-hole pressure, which explains the conservativeness of
the generated control action. Table 6 better illustrates this phenomenon with the
results, where PNMPC performed better with respect to the pbh tracking, while
NMPC produced slightly more oil since it showed lower IAE for q.

Table 6: Metrics for each controller in the problem of pressure tracking with target production.
ESN-NMPC ESN-PNMPC

IAE (pbh) [bar] 1724.65 870.78
IAE (q) [m3/h] 7222.01 8106.24

∆utot (z) 0.37 0.95
∆utot (f ) [Hz] 21.45 25.34

Mean execution time [s] 1.07 0.45 s
Worst execution time [s] 1.23 1.11 s

The total relative error of the choke valve opening between each controller was
REMPC(z) = 47.12, while for the pump frequency it was REMPC(f) = 11.04.
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Figure 8: Results for the bottom-hole pressure tracking while maximizing oil production for both
the ESN-NMPC and the ESN-PNMPC. The first plot shows the controlled bottom-hole pressure.
The second plot shows the oil flow q with the target oil production given by the horizontal dashed
red line. The bottom plots present the manipulated variables choke opening z, and pump frequency
f .

There is a significant difference between each controller because we are purpose-
fully driving the system into a point at the limit of its own constraints, therefore
provoking entirely different reactions from each controller. From a qualitative
point of view, the PNMPC calculates the control action based on the current op-
erating point of the optimization problem, defined by the initial free response
trajectory, while the NMPC prediction model must compose a whole trajectory
from scratch, which changes how both controllers handle constraint limits. The
PNMPC model is linear in terms of the control increment, therefore it will seek
greedy solutions to handle the constraints, whereas the NMPC handles the control
trajectory more precisely. This explains why the PNMPC prioritizes the bottom-
hole pressure, since minimizing its tracking error is easier from the controller’s
point of view.
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6. Conclusion

This work has shown the successful application of ESN-based NMPC to the
control of an ESP-lifted well characterized by a system of differential equations.
The ESN was able to capture the patterns of the well with high accuracy and
therefore was embedded in the proposed MPC strategies as the prediction model.
In conjunction with an error correction filter, both Single-Shooting NMPC and
PNMPC achieved promising results with the ESN for the application at hand. We
conclude that the capacity of the ESN to learn to reproduce the nonlinear dynamics
from unknown plants in a data-driven way is an ideal and pragmatic match to MPC
strategies for control.

In tracking control experiments, PNMPC achieved a performance approach-
ing that of NMPC, but at a significantly lower computational complexity, which
is remarkable given that the latter relies on advanced software with automatic dif-
ferentiation and an NLP solver, whereas the former uses a QP solver and a simple
recursive algorithm to compute sensitivities. We recommend the ESN-PNMPC
approach especially if control action calculation must be fast.

The ESN needs a large number of states to correctly represent a plant by train-
ing only the output weights. This makes the sensitivities (gradient) computation
costly due to function composition. Normally, by defining the dynamic system
state as decision variables and the system equations as constraints (Multiple-
Shooting), one would mitigate the cost of computing gradients. However, mul-
tiple shooting would entail a large number of decision variables and constraints
for ESN. This motivates future research on how to efficiently achieve practical
Multiple-Shooting NMPC with ESNs. Future work also includes the application
of proposed approaches into a real-world ESP-lifted well plant.
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