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Abstract—Nonlinear Model Predictive Control (NMPC) of
industrial processes is changeling in part because the model
of the plant may not be completely known, but also for being
computationally demanding. This work proposes an extremely
efficient Reservoir Computing (RC)-based control framework
that speeds up the NMPC of processes. In this framework,
while an Echo State Network (ESN) serves as the dynamic RC-
based system model of a process, the Practical Nonlinear Model
Predictive Controller (PNMPC) simplifies NMPC by splitting the
forced and the free responses of the trained ESN, yielding the
so called ESN-PNMPC architecture. While the free response
is generated by forward simulation of the ESN model, the
forced response is obtained by a fast and recursive calculation
of the input-output sensitivities from the ESN. The efficiency
not only results from the fast training inherited by RC, but
also from a computationally cheap control action given by the
aforementioned novel recursive formulation and the computation
in the reduced dimension space of input and output signals. The
resulting architecture, equipped with a correction filter, is robust
to unforeseen disturbances. The potential of the ESN-PNMPC
is shown by application to the control of the four-tank system
and an oil production platform, outperforming the predictive
approach with an LSTM (Long-Short Term Memory) model, two
standard linear control algorithms and approximate predictive
control.

Index Terms—Model Predictive Control, Reservoir Computing,
Echo State Networks.

I. INTRODUCTION

Effectively controlling complex industrial plants whose
models are initially unknown constitutes a challenging task.
Indeed, such cases are very common in the real world, de-
manding efficient data-driven schemes to control such plants.
Usually, an approximate (black-box) model of an unknown
plant is found by a system identification procedure [1].

Out of many possible control methods from the literature
that can be applied to systems without known models [2],
model predictive control (MPC) is one technique that has
become standard for multivariate control in industry and
academia [3]. Since its inception in the 1970s, MPC was
successfully applied in the oil and gas [4], aerospace [5] and
process industries, as well as in robotics [6]. MPC has the ad-
vantage of simplicity and intuitiveness over other approaches,
as little knowledge about control theory is required to apply
the method in an industrial level [3]. The core idea of MPC
is to control a system by employing a prediction model, using
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it to solve an optimization problem in a receding horizon
approach at every iteration. For linear models, the optimization
problem to find the control action is a Quadratic Programming
(QP) problem, akin to efficient linear MPC strategies such as
Dynamic Matrix Control (DMC) and Generalized Predictive
Control (GPC) [3]. On the other hand, complex industrial
plants are better represented by nonlinear dynamic models,
for which MPC may be challenging to apply in a rapid
straightforward manner, due to the need to solve a nonlinear
programming problem (NLP) at each iteration.

Recurrent Neural Networks (RNN) are considered universal
approximators of dynamical systems [7], and can serve as
black-box models for nonlinear MPC. System identification
with these RNNs is based on historical data, i.e., on a dataset
of input-output pairs of the nonlinear plant. Training RNNs to
model the plant is equivalent to minimizing an error (cost)
function with respect to the weights of the network. For
regression, this function is usually the mean squared error
between the true and predicted outputs. Traditional RNNs use
the error function gradient to iteratively update the network
weights, which does not guarantee global optimality. Besides,
this learning procedure is prone to become disrupted by
bifurcations [8] and is computationally costly.

An alternative way to model dynamic systems is by Reser-
voir Computing (RC) [9], [10]. The basic assumption of RC is
to first project an input space into a high-dimensional dynamic
nonlinear space, the reservoir space, and then use the resulting
temporal features as new inputs in linear regression tasks.
The reservoir is usually given by a nonlinear RNN with fixed
weights, while a second linear readout output layer is subject
to training (Fig. 1). As only the output layer of the RNN is
trained, the learning is fast and has a global optimum corre-
sponding to the least squares solution, overcoming previous
limitations of gradient-based training for RNNs. When the
RNN is composed of tanh units forming an analog network,
the resulting network is also called an Echo State Network
(ESN) [11], [10]. This linear training also enables the model
to be updated online with new data through algorithms such
as Recursive Least Squares (RLS) [12].

Other works use Radial Basis Function (RBF) networks
[13] or fuzzy logic [14] for system identification. Although
RBF nets have efficient training, in order to model system’s
dynamics, delayed signals need to be introduced in the input
layer since a RBF net has no inner dynamics as does the
RC network. The benefit of RC here is to automatically take
into account the nonlinear dynamics of the process, neither
requiring to increase the input dimension, nor to find the
right size of the time window. In general, fuzzy systems also
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need the same sort of delayed signals to model dynamics and,
although linguistic rules can express operator knowledge, the
size of the knowledge base increases exponentially with the
number of inputs.

To deal with the issue of solving a NLP per iteration,
the Practical Nonlinear Model Predictive Controller (PNMPC)
framework [15] employs a fully nonlinear model to compute
the free response of the system, while applying a first-order
Taylor expansion in the model to approximate the forced
response, which is the sensitivity of the response to the control
action. This expansion allows full retention of model precision
in relation to the nonlinear system for the free response, unlike
in [16], where the ESN is linearized as a full state-space
system, therefore losing model precision along the prediction
horizon. In addition, because the derivative with respect to
the state has to be computed in [16], the computational and
memory demands are high when compared to our proposal
based on PNMPC. PMNPC was shown to achieve good
performance in several applications, such as in the control
of oil and gas processes [17], but with one drawback: since
the model gradient is either not stipulated or assumed very
expensive to obtain, a finite difference method is necessary in
order to compute the derivative terms involved. This incurs a
high computational cost when the number of process inputs
and outputs is large, due to the combinatorial nature of the
finite differences computation.

In this context, our work proposes an extremely effi-
cient Reservoir Computing (RC)-based control framework that
speeds up the NMPC of processes by combining the PNMPC
principle of splitting the forced and the free responses, with a
trained ESN as the dynamic system model, yielding the so
called ESN-PNMPC architecture. Specifically, our proposal
substitutes the finite difference method of PNMPC for a fast
analytical computation of the derivative in terms of the ESN.

A. Contributions
The contributions of this new ESN-PNMPC method are:
1) a novel recursive formulation for fast calculation of sen-

sitivities from the RC network, which yields a Jacobian
matrix that directly relates output changes with control-
input variation, unlike other works [16] that explicitly
model the states of the RC network in the control
algorithm, which is usually high-dimensional;

2) an extremely efficient control method based on RC
nets, that results from the fast training inherited by RC
combined with a computationally cheap control action,
yielded by the aforementioned recursive formulation and
computation in the reduced dimension space of input and
output signals from the RC net;

3) a new methodology for tuning the parameters of a
correction filter that achieves robustness to unpredictable
disturbances;

4) a demonstration of the proposed ESN-PNMPC archi-
tecture in the control of two representative dynamic
systems: the well-known four-tank system and an oil
production platform consisting of two wells and one
riser [12], in addition to comparisons with a PI con-
troller, a linear MPC, and PNMPC with a LSTM model.

This paper extends considerably on our previously published
conference work [4], specifically items 3) and 4) of the above
contributions are completely new, including new extensive
control simulations and analysis as well as experiments on the
effect of the RC net hyperparameters on control performance.

II. RELATED WORK

In [16], an ESN is trained to serve as the model in MPC,
akin to our work. However, instead of separating the system
into a nonlinear free response and a linear forced response
obtained by calculating the sensitivity to the input, the whole
ESN is approximated into a state space system for computation
of the control action. The large number of states in the ESN
results in the QP itself being approximated for that work,
which leads to a more computational and memory demanding
program compared to our work. Besides, their method does
not allow to retain full precision of the state progression in
the prediction horizon of MPC, as the state is also computed
as a linear approximation. In contrast to [16] which uses a
time-variant static gain over the error, our proposed ESN-
PNMPC scheme filters the error, integrating it into a correction
factor, which ensures zero steady-state prediction error [3],
[15]. Besides, our work is applied to representative dynamic
plants in industry and benchmark control systems, and not
only to purely mathematical systems as in [16]. Another
work [18] employs a Taylor linearized Echo State Network
as predictive model, while using the trained ESN as an
observer [19]. However, the controller itself works only for a
predefined operating point of the linearized ESN, which limits
its flexibility and applicability.

A more recent work [20] analyses the stability properties of
an ESN-based NMPC. A quadratic cost function is considered,
however their approach differs from ours in that the optimiza-
tion problem is solved using the full nonlinear model, resulting
in a more computationally expensive controller. Also, instead
of integrating and filtering the prediction error, a nonlinear
Luenberger observer term is applied. There are other works
combining ESN and MPC, such as [21]. However, all of these
methods differ from the current work in that they do not apply
the Taylor expansion to compute sensitivity (forced response)
neither do they design an error correction filter, both of which
are going to be elaborated upon in the next section.

Other works employing ESNs for control of nonlinear plants
using methods different from MPC include [22], [12]. For
instance, [12] uses an architecture with two RC networks
that learns online to simultaneously identify and control the
dynamic system. As it does not use MPC, the control is only
of regulatory nature, not allowing constraints to be added. The
work [22] proposes a Backstepping controller that uses an ESN
as the model and includes an error correction term. Despite
showing promising results, such nonlinear control methods are
highly dependent on model accuracy. In [23], a variation of
ESNs for position-tracking is proposed that combines a Fuzzy
inference scheme and a wavelet activation function for error
correction in a Sliding Mode Control strategy.

With respect to NMPC with model linearization, [24] com-
pares nonlinear to linear MPC, and introduces the concept
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of Real Time Iteration (RTI), which consists in computing the
NMPC solution with a single iteration of Sequential Quadratic
Programming (SQP). Also, [24] argues how similar this strat-
egy is to a linear MPC, if the QP sensitivities are obtained
offline. The logic behind RTI is similar to PNMPC, however
RTI reduces the nonlinear system into a linear state-space
system, whereas PNMPC uses the output-to-input sensitivity
to calculate the control action. Similar to the RTI framework in
employing NMPC with successive linearizations, [25] adds a
LSTM as the proxy model for the MPC of the cooling system
of a large business center. The LSTM approach achieved a
slightly lower test error for their problem, but it is harder to
train than an ESN. Like other works based on linearization
for NMPC, [25] reduces the nonlinear system into a Linear
Time-Varying (LTV) state-space system, which is the main
difference to our approach which relies on the separation of
the free and forced response. According to the reported results,
the control signals are updated every 20 minutes to counter the
long computation time of NMPC linearization with the LSTM.
In contrast, owing to the efficient computation of sensitivities,
the proposed ESN-PNMPC achieves fast calculation of the
control action in a dynamic system of comparable complexity
presented in our work.

In [26], several algorithms are presented for suboptimal
NMPC with linearization, including some cases with recurrent
neural networks. The most similar one to PNMPC is MPC with
nonlinear prediction and linearization along the Trajectory
(MPC-NPLT). In fact, PNMPC can be viewed as a special
case of MPC-NPLT with respect to model linearization, where
the forced response is calculated assuming fixed the latest
control signal over the prediction horizon. Besides, PNMPC
is a practical realization in terms of procedures to efficiently
compute the required sensitivity matrix, while MPC-NPLT
gives only a skeleton which is not directly realizable. Further,
PNMPC implements a filter that measures the real plant
output for error correction, granting robustness to unforeseen
disturbances by ensuring zero error from bias. This feature is
crucial when using an inexact representation of the plant, such
as an RNN, thus countering modeling errors, alongside errors
from Taylor approximation.

Another example of NMPC algorithms utilizing Neural Net-
works (NN) linearized online as a model is the Approximate
Predictive Control (APC) [27], that assumes a feedforward NN
with external dynamics. The algorithm reduces the NN into
a discrete transfer function, and obtains the free and forced
response based on such linearization at each time step, as per
[3], in contrast to our ESN trajectory linearization approach.
Both methods calculate the dynamic sensitivity matrix [3]
recursively. While the ESN is usually higher-dimensional than
a feedforward NN with external dynamics, the latter is more
difficult to train depending on the complexity of the considered
dynamical system, when compared to ESNs [10], [11], [9].

III. METHODS

A. Echo State Networks (ESN)

An ESN is a type of recurrent neural network with useful
characteristics for system identification [28], as it represents

input
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y

Fig. 1: Representation of an Echo State Network, one of the
possible models in Reservoir Computing. Dashed connections
(from Reservoir to Output Layer) are trainable, while solid
connections are fixed and randomly initialized.

nonlinear dynamics well and the training consists in solving
a linear least-squares problem of relatively low computational
cost when compared to nonlinear optimization.

1) Model: Proposed in [10], [11], the ESN is governed by
the following discrete-time dynamic equations:

a[k + 1] = (1− γ)a[k]

+ γf(Wr
ra[k] + Wr

i u[k] + Wr
b + Wr

oy[k]) (1)
y[k + 1] = Wo

r a[k + 1], (2)

where: the state of the reservoir neurons at time k is given by
a[k]; the current values of the input and output neurons are
represented by u[k] and y[k], respectively; γ is called leak rate
[28], which governs the percentage of the current state a[k]
that is transferred into the next state a[k + 1]. The weights
are represented in the notation Wto

from, with “b”, “o”, “r”,
and “i” meaning the bias, output, reservoir, and input neurons,
respectively; and f = tanh(·) is an activation function widely
used in the literature, also called a base function in system
identification theory [1]. Fig. 1 depicts a standard architecture
of an echo state network.

The network has N neurons in the reservoir, which is the
dimension of a[k] and is typically orders of magnitude higher
than the number of network inputs. As long as regularization
is used in network training, N can be as large as needed, but
at the expense of increased computation time to update the
reservoir states as defined in (1). According to [29], the ESN
with no output feedback connections (the output has no effect
on the state), which is given by Wr

o, has a memory capacity
(MC) bounded by the number of neurons in the reservoir
(MC ≤ N ), assuming that linear output units are used.

The recurrent reservoir should possess the so-called Echo
State Property (ESP) [11], i.e., a fading memory of its pre-
vious inputs, meaning that influences from past inputs on the
reservoir states vanish with time. The ESP is guaranteed for
reservoirs with tanh(·) as the activation function, provided
that the singular values of Wr

r < 1. However, this condition
limits the richness of the reservoir dynamical qualities, which
discourages its use in practice. Note that all connections going
to the reservoir are randomly initialized, usually according to
the following steps:
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1) Every weight of the network is initialized from a normal
distribution N (0, 1).

2) Wr
r is scaled so that its spectral radius ρ (Eigenvalue

with the largest module) characterizes a regime able to
create reservoirs with rich dynamical capabilities. It has
been often observed that setting ρ < 1 in practice gen-
erates reservoirs with the ESP [28]. However, reservoirs
with ρ > 1 can still have the ESP since the effective
spectral radius may still be lower than 1 [30], [31].

3) Wr
i and Wr

b are multiplied by scaling factors fri and
frb , respectively, affecting the magnitude of the input.

These scaling parameters, ρ, fri , and frb are crucial in the
learning performance of the network, having an impact on the
nonlinear representation and memory capacity of the reservoir
[32]. Also, low leak rates allow for higher memory capacity in
reservoirs, while high leak rates should be favored for quickly
varying inputs and/or outputs. The settings of these parameters
should be such that the generalization performance of the
network (loss on a validation set) is enhanced.

2) Training: While in standard RNNs all weights are
trained iteratively using gradient descent [33], ESNs restrict
the training to the output layer Wo

r . Because the echo state
property is not insured with output feedback Wr

oy[k], this
work favors reservoirs without feedback from the output (i.e.,
Wr

o = 0). Also, the inputs do not interfere directly in the
output, as systems with direct transmission are less smooth
and more sensitive to noise. To train an ESN, the input data
u[k] is arranged in a matrix U and the desired output d[k]
in vector D over a simulation time period, where each row
uT of U corresponds to a sample time k and its columns
are related to the input units. For the sake of simplicity, we
assume that there are multiple inputs and only one output.
The rows of U are input into the network reservoir according
to each sample time, thereby creating a state matrix A that
contains the resulting sequence of states. Then, we apply the
Ridge Regression algorithm [34] by using A as the input data
matrix and D as the output data matrix, or in this case a
vector as we assumed single output. Ridge Regression results
in solving the following linear system:

(ATA− λI)Wo
r = ATD, (3)

where λ is the Tikhonov regularization parameter, which
serves to penalize the weight magnitude, and avoid overfitting.
There are also methods to apply least squares training in an
online way [1], but these algorithms are not used in this work.

B. Practical Nonlinear Model Predictive Control (PNMPC)

Developed by [15], the Practical Nonlinear Model Predictive
Controller (PNMPC) is a method that, through a first order
Taylor expansion, separates a nonlinear dynamic model into
a free response and a forced response. An advantage of this
approximation strategy is that the free response has full preci-
sion in relation to the whole nonlinear system. The separation
between free response and forced response is normally a char-
acteristic of linear systems due to the homogeneity property.
However, by obtaining the first order Taylor expansion of an

arbitrary differential function h(u) with respect to an input u,
we can better explain the intuition behind the PNMPC:

h(u) ≈ h(ū) +
∂h(ū)

∂u
∆u, (4)

where u = ū+ ∆u, ū is a fixed point, and ∆u is a variation
around that same point. The arbitrary nonlinear function h(u)
is split into: (i) a zeroth-order term h(ū) which is analogous
to the PNMPC free response as it computes the current h with
only ū as input; and (ii) a first-order term which carries the
same intuition as the forced response, as it is linear over ∆u.
Note that here h(ū) will be simulated by running (1) without
any approximation in the ESN-PNMPC method that will be
presented, retaining full nonlinear precision for problems of
rich dynamics. The PNMPC has a computational advantage
over a standard Nonlinear MPC because the resulting control
problem to be solved per iteration is a quadratic program (QP),
similar to a linear MPC, whereas in the full nonlinear case a
nonlinear program (NLP) would be solved. This approach is
advantageous when time constraints are in place. The PNMPC
is more or less akin to performing a one-step SQP in a
quadratic cost function problem using a nonlinear model.
Assume a dynamic system in the form:

x[k + i] = f(x[k + i− 1],u[k + i− 1]) (5)
y[k + i] = g(x[k + i]) (6)

u[k + i− 1] = u[k − 1] +

i−1∑
j=0

∆u[k + j]. (7)

In the context of this work, f models the state dynamics of an
echo state network, as given by Eq. (1), and g is the output
function defined by Eq. (2).

The vectors for output predictions are collected in Ŷ1. In
PNMPC, the prediction Ŷ is defined in terms of the control
increment ∆U, and free response F, as follows:

Ŷ = G(x[k],u[k]) ·∆U + F(x[k],u[k]) +O(‖∆U‖2),
(8)

where:

∆U =


∆u[k]

∆u[k + 1]
...

∆u[k +Nu − 1]

 , (9)

F =


g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k +Ny − 1],u[k − 1]))

 , (10)

Ny is the prediction horizon, Nu is the control horizon, and
the G matrix is the Jacobian of the state equations at the free
response. The third term in (8) is the Taylor approximation
error in Big-O notation, which showcases that as long as ∆U
is small, the approximation error will be small.

The vector ∆U consists of the concatenation of each
control increment applied to the calculation of the predictions

1Ŷ is the notation for the model prediction in MPC theory.
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up to k = Nu. The vector Ŷ gives all of the predictions
performed by the model from k = 0 to k = Ny . Notice that
for a given time k+ i the free response depends on the system
state at that time, x[k+ i], and only on the input at time k−1
because the control signals remain constant (∆U = 0). As
the vector F contains all the free responses, the term G ·∆U
is the forced response over the prediction horizon.

The Jacobian of the state equations is defined as:

G =


∂y[k+1]
∂u[k] 0 . . . 0
∂y[k+2]
∂u[k]

∂y[k+2]
∂u[k+1] . . . 0

...
...

. . .
...

∂y[k+Ny ]
∂u[k]

∂y[k+Ny ]
∂u[k+1] . . .

∂y[k+Ny ]
∂u[k+Nu−1]

 .

The derivatives inside G are taken with respect to ∆u[k+i] =
0,∀i < Nu, and u represents the manipulated variable vector.
This structure is a vectorized form of the prediction along the
horizon, which is similar to the vectorization of predictions in
the DMC and GPC [3].

The equations above derive from the first-order Taylor series
expansion in relation to the manipulated variables, whereby the
free-response F retains the nonlinearity, whereas the forced-
response is linearized so that the control increment is calcu-
lated via a QP. The matrix G is a result of that linearization,
as each line corresponds to the first order term of the Taylor
series w.r.t. the control increment at a certain instant in time.

As [15] assumes a generic nonlinear system, estimates for
the derivatives are calculated with a finite-difference method,
which inherently suffers from combinatorial explosion when
multiple variables are involved. To this end, the following
section proposes the ESN-PNMPC scheme to overcome the
aforementioned limitation, enabling fast computation of lin-
earized models on the fly.

C. ESN-PNMPC

1) Introduction: The proposed ESN-PNMPC scheme con-
sists of integrating an ESN as the state space model for
PNMPC (see Fig. 2). The ESN model allows the analytical
computation of derivatives, which drastically reduces the com-
putation time by mitigating the limitations of finite differences.
Thus, the solution of the QP is the only computationally
expensive aspect of the proposed algorithm.

2) Linearizer – Forced Response Derivation: In order to
compute the derivatives of the output y of the dynamical
system with respect to the input u, the chain rule is applied:

∂y[k + i]

∂∆u[k + j]
=

∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(11)

∂x[k + i]

∂∆u[k + j]
=

∂f

∂∆u[k + j]

+
∂f

∂x[k + i− 1]

∂x[k + i− 1]

∂∆u[k + j]
. (12)

The implication in Equation (12) is that G is recursively
built by forward propagating from i = 0 to i = Ny .
Considering that the dynamic matrix is evaluated at ∆U = 0,

QP Solver Plant

Free Resp.

Prediction

Linearizer

Error 

Correction

Ref

ESN-PNMPC

ESN

ESN data

Fig. 2: Block diagram representation of the ESN-PNMPC.
The ESN block represents an ESN trained to mimic the plant,
which is used by the Linearizer block to compute G using the
ESN Jacobian, and by the Free Response Prediction block.
The Error Correction block provides an integrated filter that
computes the correction factor, while the QP Solver block
handles the resulting optimization problem.

all the derivatives along the horizon can be evaluated with
respect to the control input u[k − 1]. Therefore,

∂f(x[k + i])

∂∆u

∣∣∣∣
∆u=0

=
∂f(x[k + i])

∂u

∣∣∣∣
u=u[k−1]

.

As long as i > j (line i and column j of matrix G), the
control increment ∆u[k + j] has influence on the output at
time instant k + i because the control signal was input in a
previous instant. From Eq. (7), the control increment ∆u[k+j]
has equal influence on the state equation for state x[k+ i] for
all j, and therefore ∂f(x[k+i])

∂∆u[k+j] has the same value regardless

of j. Therefore the notation J(i) = ∂f(x[k+i])
∂∆u can be used to

represent any ∂f(x[k+i])
∂∆u[k+j] . Further, ∂f(x[k+i])

∂x[k+i] is denoted as S(i)
to simplify the developments.

By adopting the above notation into Eqs. (11)-(12), the
partial derivatives can recast in a recursive form:

Gij =
∂g

∂x[k + i]

∂x[k + i]

∂∆u[k + j]
(13)

∂x[k + i]

∂∆u[k + j]
=


J(i− 1) + S(i− 1) ∂x[k+i−1]

∂∆u[k+j]
i > j

J(i− 1) i = j

0 i < j,

(14)

where Gij represents the block element of G at row i and
column j. The construction of G starts when i = 1, where the
initial condition ∂g

∂xJ(0) is input to G1,1. As i < j for the rest
of the row, all terms G1,(j 6=1) = 0. For the subsequent rows,
information used to calculate the previous row is used for the
next, until i = j, where Gi,j = ∂g

∂xJ(i− 1) and i < j, where
Gi,j = 0. This calculation ends when i = Ny .

Because an ESN is trained offline to serve as the prediction
model, the model derivatives are well defined [16], [18], being
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given as follows:

∂g

∂x
= Wo

r

J(i) =
∂f

∂zi
Wr

i

S(i) = (1− γ)I + γ
∂f

∂zi
(Wr

r + Wr
oWo

r )

zi = Wr
ra[k + i] + Wr

i u[k − 1]

+ Wr
oWo

r a[k + i] + Wr
b,

where the network state a[k] corresponds to the model state
x[k], and zi is an auxiliary variable representing the argument
of the activation function in the ESN model. Since, in this
work, f = tanh(·) is a function applied to each entry of the
vector zi (i.e., element-wise function), ∂f

∂zi
is a diagonal matrix

with all nonzero elements being [1− tanh2(zi)].
Summarizing, the trained ESN model is used to compute the

free-response predictions and analytically calculate the Taylor
approximation to formulate the QP on the fly, which is solved
at every iteration. Besides errors inherent to disturbances
and modeling, additional errors are incurred in the predictive
model by the Taylor expansion. In [16], a supervised learning
strategy is embedded in a NMPC to estimate the Taylor
expansion error, whereby the actual and predicted outputs are
used as information. In the PNMPC, the Taylor expansion error
is considered part of the disturbance model.

3) Error Correction Filter: To treat disturbances and mod-
eling errors, [15] advocates the use of a low-pass discrete
filter on the error between the current measured output and
the current prediction, which is computed as part of the free
response. If the model was identical to the plant and no
disturbances were applied, the presence of the filter and the
proposed closed-loop framework would be not different than
an open-loop implementation. The filter serves to slow down
the error response from the point of view of the controller, thus
increasing robustness but sacrificing response speed according
to the filter cutting frequency [3]. In practice, this is merely a
different perspective to the problem, since the approach taken
by [16] is equivalent to using a variable static gain as a filter.

Adding the filter, the free-response becomes:

F =


g(f(x[k],u[k − 1]))

g(f(x[k + 1],u[k − 1]))
...

g(f(x[k +Ny − 1],u[k − 1]))

 + 1η[k] (15)

∆η[k] = (1− ω)(ŷ[k|k − 1]− ym[k]) + ω∆η[k − 1] (16)
η[k] = η[k − 1] +K∆η[k] (17)

ŷ[k|k − 1] = g(f(x[k − 1],u[k − 1])) + η[k − 1], (18)

where ym[k] is the measured variable from the plant, K is
the integrator gain, and ω is the leak rate of the filter, which
is used to enhance the robustness capability of the controller,
ŷ[k|k − 1] is the output prediction for time k calculated at
time k−1, using η[k−1] as correction factor, and η[k] is the
currently calculated correction factor yielded by the filter.

The work in [17] proposes a method on how to tune the
filter parameters. To simplify this formulation, we assume that
the system being controlled has only one output, however we
can either use the same filter for different outputs, or apply

different filters with the same formulation. We first define the
a priori error ε[k] as:

ε[k] = ym[k]− yesn[k|k − 1], (19)

where yesn[k|k−1]2 is the output computed by the ESN using
information given at time k − 1, and {ym, yesn[k|k − 1]} are
not bold because they are assumed scalars. The a posteriori
error e[k] is defined as:

e[k] = ym[k]− ŷ[k|k − 1]. (20)

We desire to find a transfer function between the a priori
error and the a posteriori error, which dictates the dynamics
for the correction. To this end, we first expand Eq. (20), and
substitute Eq. (19) inside, obtaining:

e[k] = ε[k]− η[k − 1]. (21)

In terms of the a posteriori error, by putting Eq. (20) in (16)
the equations that define the correction factor become:

∆η[k] = ω∆η[k − 1] + (1− ω)e[k] (22)
η[k] = η[k − 1] +K∆η[k]. (23)

Applying the z transform into Eqs. (21)-(23), we obtain:

e(z) = ε(z)− z−1η(z) (24)

η(z) =
K

1− z−1
∆η(z) (25)

∆η(z) =
1− ω

1− ωz−1
e(z); (26)

and joining the resulting equations into one, we obtain the
transfer function for e(z)

ε(z) :

e(z)

ε(z)
=

z2 − (ω + 1)z + ω

z2 − (ω + 1−K(1− ω))z + ω
. (27)

It is noticed that, since we have 1 as a zero in this transfer
function, the steady state error is guaranteed to be 0 for a
constant a prior error [17]. Our next step is to tune K and ω.
We set the denominator of the transfer function to be equal to
a given characteristic polynomial with two equal valued roots:

p(z) = (z − a)2 = z2 − 2az + a2

where a = [0, 1) is the root of the polynomial, and the desired
location of the poles for the transfer function. Defining the
charateristic polynomial and forcing the error dynamics to
have two real, stable poles, we now calculate the gain K and
the filter frequency ω as follows, deriving from equation (27):

ω = a2 (28)

K =
a2 − 2a+ 1

1− a2
. (29)

These equations define K and ω based only on the pair of
desired poles for the error correction dynamics. To turn off
the filter dynamics, we may set ω = a = 0, and K = 1.

By tuning K and ω so that the pole pair {a, a} is stable,
we can reject any constant-valued disturbance, as the dynamics
have a zero z0 = 1. This, of course, includes the Taylor series
approximation error O(‖∆U‖2), which is seen by the filter
as another source of disturbance.

2yesn is equivalent to the output y in equation (2).
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4) QP Problem: If the quadratic error is used as the cost
function for the NMPC, the equations in matrix form become:

J = (Yref − Ŷ)TQ(Yref − Ŷ) + ∆UTR∆U,

where Yref is the output reference over the prediction
horizon, and Q and R are diagonal matrices with the output
and control weighting, whose utility is to express a variable’s
importance in the cost function.

Since the predicted output is stated in a form akin to the
GPC and DMC strategies for MPC [3], the cost function is
formulated as follows:

J = ∆UTH∆U + cT∆U

H = GTQG + R

c = GTQT (Yref − F).

In receding horizon control problems, saturation and rate
limiting constraints are typically introduced to the optimiza-
tion problem to ensure a feasible operation. Such saturation
constraints are formulated as follows:

1umin − 1u[k − 1] ≤ T∆U ≤ 1umax − 1u[k − 1],

where 1 is a vector composed only of ones which matches
the dimension and form of ∆U. If the problem was structured
as a SISO (Single-Input Single-Output), T would be a lower
triangular matrix. As our work concerns a MIMO (Multi-Input
Multi-Output) system and the prediction outputs for a sample
time are stacked as vectors in Ŷ, the matrix T is defined as:

T =

Inin 0nin 0nin

Inin

. . . 0nin

Inin Inin Inin

 ,

where Inin
is a nin sized identity matrix and 0nin

is a nin
sized square matrix of zeros, with nin being the number of
system inputs. Summarizing, T is a block triangular matrix of
nin-dimensional square matrices, where each column of the
block matrix represents an instant in the prediction horizon.

Likewise, rate limiting constraints are stated as follows:

∆Umin ≤ I∆U ≤∆Umax,

where I is the identity matrix, with dimension ninNu.
Summarizing, the optimization problem solved per iteration

is stated as follows:

min
∆U

J(∆U) = ∆UTH∆U + cT∆U

s.t. I∆U ≤∆Umax

−I∆U ≤ −∆Umin

T∆U ≤ 1umax − 1u[k − 1]

−T∆U ≤ −1umin + 1u[k − 1],

(30)

which is a quadratic program. As long as Q and R contain
only positive values, H = GTQG+R is structurally positive
definite. This guarantees that the constraints and objective
function are convex and, with any other linear constraints,
compose a convex QP problem, which can be easily solved.

Finding a stability attraction region for such controller is
not a trivial task, and constitutes another work on its own.
For instance, [35] formulates a stability analysis method for
MPC with a quasi-LPV model for a dynamical system, which
might be applied for PNMPC. However, for the unconstrained

and local case (when the operation is close to an equilibrium),
closed-loop stability can be analyzed using stability analysis
methods for linear MPC [3], e.g., reducing the linear MPC
into a PID controller.

IV. APPLICATIONS

A. Introduction

The ESN for the PNMPC was implemented from scratch
using only Python and NumPy. Also, the Oger [36] Python
toolbox was used for grid search, regularization, and pa-
rameter analysis (Section IV-C2). The plant models3 were
implemented in the JModelica framework, which compiles the
Modelica language using Python. In order to wash out the
initial transient of the ESN, it is advisable to first run the
ESN-PNMPC alongside the plant for a few time steps in open
loop (200 time steps in the case of the applications below).

B. Error Metrics

1) Model Error: The model error (ESN prediction) can be
measured on the test data (with respect to the desired output
d[k]), or during control (w.r.t. the measured plant response
ym[k] for an input u[k]), with or without the correction filter:
• Relative Prior Error is the relative error of the ESN

without the correction filter (given by y[k] = yesn[k]):

epre,%[k] = 100×
∣∣∣∣ym[k]− yesn[k]

ym[k]

∣∣∣∣ . (31)

• Relative Posterior Error is the relative error of the ESN
with the correction filter (given by ŷ[k|k − 1]):

epost,%[k] = 100×
∣∣∣∣ym[k]− ŷ[k|k − 1]

ym[k]

∣∣∣∣ . (32)

• Integral of Absolute Error (IAE) for the ESN prediction
on test data:

IAE =

Ntest∑
k=1

|d[k]− yesn[k]|. (33)

• Root Mean Squared Error (RMSE) for the ESN pre-
diction on test data:

RMSE =

√√√√ 1

Ntest

Ntest∑
k=1

(d[k]− yesn[k])
2
. (34)

While the first two metrics above are computed per timestep
k during ESN-PNMPC control execution, the latter two sum-
marize the error on a given test set of size Ntest.

2) Tracking Error: The tracking error is measured with
respect to the reference yref and computed by using the IAE
during control execution (where N is the simulation time):

IAE =

N∑
k=1

|ym[k]− yref [k]|. (35)

3Plant models are described with more details in the supplementary material
(attached to the current paper submission).
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C. Four-tank System

The four-tank system [37] is widely used as a benchmark
of multivariate and nonlinear control systems with coupled
variables. The system consists of two pumps j ∈ {1, 2},
two directional valves, and four tanks i ∈ {1, 2, 3, 4} with
levels hi. A detailed description is given in Appendix A
of the supplementary material (attached to the current paper
submission), showing the coupling between pumps and the
tanks. In this work, the objective of the ESN-PNMPC is
to control the level of tanks 1 and 2 (h1 and h2), while
rejecting a disturbance flow ωdist,3 that is input into tank 3,
by manipulating both pump voltages u1 and u2.

1) Problem Formulation: The cost function for the predic-
tive control problem in the four-tank system is as follows:

J =

Ny∑
j=1

(q1e
2
1[k + j|k] + q2e

2
2[k + j|k])

+

Nu−1∑
j=1

(r1∆u2
1[k + i|k] + r2∆u2

2[k + i|k]), (36)

where: q1 (q2) corresponds to the weight of the reference error
e1 (e2); and r1 (r2) is the control variation penalty for ∆u1

(∆u2). The errors are defined as follows:

e1[k + j|k] = h1,ref [k + j|k]− h1[k + j|k] (37)
e2[k + j|k] = h2,ref [k + j|k]− h2[k + j|k], (38)

with hi,ref being the reference for hi, i ∈ {1, 2}. The cost
function in (36) is the widely used quadratic penalization of
the set point error and the control increment [3], and, if the
system is linear in the input, constitutes a QP.

We also impose the following constraints in the system:

0V ≤ u1, u2 ≤ 5V (39)
|∆u1|,|∆u2| ≤ ∆umax (40)
hi,min ≤ hi ≤ hi,max, i ∈ {3, 4}, (41)

where hi,min (hi,max) is the minimum (maximum) value that
the upper tank levels (i ∈ {3, 4}) can reach. Realistically,
it might correspond to the tank height (hi,max) or the safe
maximum of the liquid level to prevent pump damage. ∆umax

is the maximum control increment possible for each control
action. For the PNMPC, it might be convenient to set this
parameter at low values, such as ∆umax = 1.0, as the function
utilized is an approximation of the full nonlinear ESN.

Since certain steady-state constraints in the tanks are not
controlled, some combinations of setpoints may not be reach-
able. For this reason, we consider two experimental cases:
• One where h3,min = h4,min = 0.5 cm and h3,max =
h4,max = 12 cm. In this case, the constraints are innocu-
ous to the extent that the constraints are not binding.

• The other where h3,min = h4,min = 0.5 cm and h3,max =
h4,max = 9 cm. Now, the possible output state is more
tight, which can lead to infeasible set-point combinations.

The first case is employed for ESN identification and hyper-
parameter analysis (Section IV-C2). The second case is used
in a disturbance rejection and tracking test (Section IV-C4),

using the ESN with the configuration that yields the lowest
control error obtained in the first case.

2) Identification and Hyperparameter Analysis: The iden-
tification of the model is based on the training of the readout
output layer of the ESN according to (3), which finds the
weights Wo

r connecting the reservoir layer to the output layer
by solving the linear system in (3). A and D are found as
follows. After collecting input-output pairs (u[k],d[k]), for
k = 1, ..., N , where N is the number of samples from the
plant, (1) is applied using u[k] for all available timesteps, with
the resulting reservoir states being collected into a matrix A.
Note that a warm-up drop of the first 100 initial states in a[k]
is applied, eliminating the starting transient of the reservoir
state. The corresponding desired output d[k] is also collected
in a matrix D.

For every randomly initialized ESN, defined by random
matrices Wr

i , Wr
r, Wr

b, the regularization parameter λ is
found using cross-validation. Choosing suitable scalings for
these random matrices is necessary in order to optimize ESN
prediction performance as well as control performance. In this
context, should the tuning of these scalings to achieve the best
control performance be based on ESN prediction performance?
We will show that there is a better, but more expensive
alternative metric than the ESN prediction performance.

For system identification and validation purposes with re-
spect to the four-tank system, the input signal u[k], rep-
resenting the pumps, consists of an Amplitude Modulated
Pseudo-Random Bit Sequence (APRBS) [1] with range ui ∈
[0.1, 5.0], i ∈ {1, 2} (before normalization) generated for
50, 000 timesteps. Under a sampling time of 10 seconds, and
applying u[k] as input to the plant, a desired output d[k]
is built by measuring the plant’s response, that is, the level
of the four tanks (using the non-minimum phase model in
[37], which is also described in the supplementary material).
Both u[k] and d[k] are normalized such that they lie on
the interval [0, 1]. The first 40, 000 timesteps were used for
training the ESN and for five-fold cross-validation (5-fold CV)
[34], while the latter 10, 000 timesteps were used to measure
the ESN’s test prediction performance using the IAE metric
defined in (33). Control performance is computed in terms of
IAE defined in (35) and using a randomly generated reference
signal hi,ref ∈ [5, 15], i ∈ {1, 2}, for N = 200 timesteps to
form href , shown in Fig. 3.

Our first experiment is explained as follows: each possible
parameter setting for leak rate and spectral radius (from a
predefined list of values) is evaluated ten times. The input
scaling is fixed empirically at 0.1 and the number of units
in the reservoir is set to 100 neurons. Each trial considers a
different randomly initialized ESN, and, thus, will perform
a 5-fold CV for finding the best regularization parameter
value. The mean IAE of these ten runs are computed for the
test set and shown in Fig. 4a, while the mean IAE for the
control task, while applying the ESN-PNMPC on the plant,
is shown in Fig. 4b. For this control simulation, the PNMPC
part was setup according to Section IV-C3. Here, the correction
filter is not used, and thus, the control is in open-loop. This
is because we aim to evaluate the capacity of the ESN in
helping the control performance, without the help of the error
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correction filter. We can note that the configuration of the
spectral radius and leak rate that yields the minimum IAE
for the ESN’s prediction (Fig. 4a) is given by the values
of 0.4 and 0.2, respectively. Besides, in the majority of the
plot, there is a smooth transition from white to black when
walking through the parameter space. On the other hand, in
Fig. 4b, that configuration is 1.1 and 0.3 for spectral radius and
leak rate, respectively. This preliminary experiment shows that
the control performance does not match exactly to the ESN’s
prediction performance, in terms of the IAE surface dependent
on the leak rate and spectral radius. Thus, it seems that the best
coupling of these hyperparameters should be found by looking
at the control (tracking) error instead of the ESN model’s error.
The drawback is that evaluating MPC control is many orders
of magnitude more computationally expensive than just model
evaluation.

We have also performed the same type of grid search
analysis for reservoirs containing 400 units. The IAE surface
of the ESN’s prediction is somewhat different from Fig. 4,
being more flat, that is, the black area where the error is
lowest is wider. In the following results section, we use the
400-unit reservoir with parameter configuration that yields the
lowest MPC tracking error, i.e., spectral radius of 0.99 and
leak rate of 0.3, properly regularized with a 5-CV for finding
the regularization parameter. The choice of a larger reservoir
is due to the observation of less oscillations in control when
compared to the 100-unit reservoir.

0 50 100 150 200
simulation timesteps
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Fig. 3: Randomly generated reference signal href for the
level of tanks h1 and h2 to be used for control performance
evaluation (IAE in (35)) with a duration of 200 timesteps.

Another experiment evaluates the test error (RMSE) as a
function of the reservoir size and the size of the training set
(Fig. 5). This is practically relevant for control of real-world
plants for which data collection time should be as short as
possible. As expected from machine learning literature, the
error on the test set decreases as the training set increases.
The same is valid for bigger reservoirs whose training is
always regularized. In the plot, each point represents the
mean of the test RMSE for ten runs with randomly generated
reservoirs, where each run includes a 5-CV for the search
of the regularization parameter. Note that this is the error on
the model prediction and that the MPC control error will not
necessarily follow the same pattern.

3) PNMPC Setup: After an open-loop test, we observed
that the slowest step response of the system was of 35 time
steps. We then decided to use a prediction horizon of 50 time
steps (500 seconds), so that the steady state is captured in one
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(a) IAE of ESN’s prediction on test data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.991.1
Spectral radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Le
a
k 
ra
te

IAE

248

256

264

272

280

288

296

304

312

(b) IAE of MPC during control

Fig. 4: IAE as a function of spectral radius and leak rate,
evaluated for an ESN model with 100 units in the reservoir.
A white point localized in the middle of the darkest cell gives
the minimum IAE. (a) Test IAE between ESN’s prediction and
reference signal for 10,000 timesteps. (b) IAE between the
plant’s measured response during a MPC task and a randomly
generated test reference signal for 200 timesteps from Fig 3.
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Fig. 5: Test RMSE as a function of reservoir size (50, 100,
400, 1000) and training set (2500, 5000 and 10,000 instances).

future prediction and taken into account during optimization.
The control horizon used was of 5 time steps, a sufficiently
small size to reduce the computational complexity of the exe-
cution, since the control horizon directly dictates the number
of decision variables optimized in the QP. The filter parameters
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K and ω were tuned so that the pole of the a priori-posteriori
error dynamics is a = 0.5 for each variable, which means that
the a posteriori error shall converge to 0 at 70 seconds, once
a bias appears in the a priori error. The identity matrix was
used for both error weights Q and control variation weights
R, so the errors and the variations are equally penalized (the
system is normalized in the PNMPC point of view).

4) Results for Tracking and Disturbance Rejection: A
tracking experiment is performed in this section where the
system is more constrained (h3 = h4 = 9 cm), using the
400-unit regularized ESN with best parameters obtained in
Section IV-C2. Note that the results on this section are made
with completely new unseen data, as the reference signal for
control is randomly generated once again.

We used an APRBS signal with range hi,ref ∈ [5, 15], i ∈
{1, 2} over 3, 000 time steps as a reference setpoint signal, and
the step-type flow disturbance in Tank 3 (ωdist,3) was injected
in the system halfway the simulation to showcase disturbance
rejection and robustness to an abrupt change in the model.
When the disturbance is applied, the ESN is expected to not
perform well, as the model has changed during the simulation
run. Fig. 6a is divided in three subplots: the topmost shows
the level of the lower tanks (h1 and h2) and each associated
reference signal, the second one shows each pump voltage, and
the third one shows the upper tank levels (h3, h4) alongside the
upper and lower bounds imposed on them. The black dashed
vertical line flags when the Tank 3 flow disturbance ωdist,3 =
1.8 kg/s is injected into the system.

Although the presence of the disturbance has considerably
diminished the prediction accuracy of the ESN due to a
parametric change in the plant model, the system still managed
to achieve reference tracking along all the 1500 time steps. In
the third plot of Fig. 6a, we observe that the constraints are
taken into consideration and are overall not violated despite:
the disturbance compromising the prediction capacity; the
ESN being a proxy of the actual model; and the constraints
calculated by the predictive controller not matching perfectly
the actual system constraints. The reason of this success is
shown in Fig. 6b, where the a prior relative error epre,% is
compared to the a posteriori error epost,%. In accordance with
the PNMPC framework, the correction is able to filter the
integration error and compensate for the bias in the prediction
induced by the disturbance. Even with a severe modeling
error provoked by the unmeasured disturbance, tracking is
still possible. As the level constraints are modeled as “hard”
(Instead of appearing as a penalty in the objective function,
imposed as a mathematical bound on the function domain), the
controller takes priority into obeying the constraints, therefore
tracking is sacrificed, which is the reason why at some points
the reference is not tracked, as shown in Fig. 6a.

5) Comparison with LSTM-PNMPC: We also compared
ESN-PNMPC to a LSTM-PNMPC controller, where an LSTM
[38] (Long Short-Term Memory) is used instead of an ESN.
The LSTM network was trained for 40 epochs with the
ADAM [39] optimization algorithm using exactly the same
dataset as the ESN (40, 000 samples, see Section IV-C2),
and implemented with the pytorch library. Its hidden layer
has 20 cells (other configurations, e.g., 5 or 80 neurons,
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(a) From upwards to downwards: the first plot consists of the tracking
response of tank levels h1 (blue) and h2 (green) as solid lines, alongside
their respective reference signals (dashed lines, matching colors and
thickness); the second plot contains the voltage signal for pump 1 (blue)
and 2 (green); and the third plot showcases the upper levels (h3,h4)
over time, alongside their upper (9 cm) and lower (0.5 cm) bounds. The
dashed vertical line shows when the disturbance ωdist,3 = 1.8 cm3/s
is input to the system, at time step number 750.
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(b) The topmost subplot gives the a priori ESN prediction errors of
the four tank levels h1, h2, h3, h4 (sorted by line thickness, with
h1 as the thinnest), and the bottom-most plot shows the relative
error of the level predictions after filter correction is applied.

Fig. 6: Experimental Results for the case where h3,max =
h4,max = 9 in a 3000 time steps run where a disturbance is
applied at k = 750. Subfigure 6a presents the full tracking,
constrained variables and disturbance rejection results, and 6b
presents the a priori and a posteriori error for all tank levels.

showed higher validation error). The built-in automatic dif-
ferentiation of pytorch [40] is used to calculate the Jacobian
matrix G. Note that the training time for an LSTM is orders
of magnitude higher that of an ESN, since it is based on
(iterative) gradient descent. Fig. 7 shows the result of the
comparison, where the “unconstrained” case is considered
(h3,max = h4,max = 12 cm) and the same reference signal is
provided to both controllers for 300 timesteps. Both controllers
achieved smooth responses. Although both cases solve exactly
the same optimization problem, the ESN-PNMPC had a faster
response than the LSTM-PNMPC. The ESN also achieved
superior performance over the LSTM in terms of prediction
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Fig. 7: Comparison between the ESN-PNMPC and LSTM-
PNMPC for the control of the four-tank system, for 300
simulation time steps. The first and second plots correspond
to the levels of tank 1 and 2, respectively, while the third plot
shows the voltage for each pump.

TABLE I: Results for PNMPC with ESN or LSTM in the
four-tank system. Computation times are per time step.

Controller
ESN-PNMPC LSTM-PNMPC

IAE (h1) 73.84 139.4
IAE (h2) 69.82 137.0

mean G calc. time (s) 0.34 174.8
best G calc. time (s) 0.247 170.9

worst G calc. time (s) 0.662 197.8
mean QP time (s) 5.36× 10−3 1.98 × 10−3

best QP time (s) 2.9× 10−3 1.77 × 10−3

worst QP time (s) 3.85 × 10−2 4.025× 10−2

mean total time (s) 0.35 174.8
best total time (s) 0.25 170.9

worst total time (s) 0.671 197.80

error for the controller run.
Table I summarizes the results, showing the IAE between

h1 and h2, the reference signal, and the time spent computing
G, the QP, and the total time to compute a control action.
We can observe that not only the LSTM-PNMPC controller is
performing worse in terms of IAE (around 92% worse) than
ESN-PNMPC, but also in terms of computation time—about
500 times on average slower than the proposed ESN-PNPMC
scheme. The latter only took 0.662 seconds to calculate G
in the worst case (timestep requiring more computation time)
during the 300 timesteps experiment, while the autograd [40]
routine for computing the Jacobian of the LSTM took 170
seconds in the best case, proving unfit to control the four-
tank system, which has a sampling time of 10 seconds. We
note that the time for computing G dominates the total time
for calculating the control action. Thus, the ESN-PNMPC
scheme, which simplifies the Jacobian calculation due to the
analytical and recursive formulation, is very well suited to real
time applications in general, unlike the currently implemented
LSTM. Using our available hardware (Intel Core i5, 3.10
GHz, 4 cores), the ESN-PNMPC with its current configuration
(reservoir size; number of inputs and outputs; prediction and

control horizon) is fit for systems of at least 1 second sampling,
as worst-case computation time of the controller is 0.671 s.

6) Comparison to Other Controllers: Here, we evaluate
ESN-PNMPC in relation to a PI controller, a Linear MPC,
specifically the Dynamic Matrix Control (DMC) strategy [3],
and a linearizing MPC strategy called Approximate Predictive
control (APC) [27] described as follows:
• A decentralized pair of PI controllers. The first PI controls

the level of tank 1 (h1) manipulating the voltage of pump
2 (u2), while the second one controls h2 using u1. This
topology was chosen by inspecting each transfer function
steady-state gain [37]. Each discrete PI has the form:

U(z)

E(z)
= K

z − z0

z − 1
, (42)

where the pair (K, z0) was chosen for both PI as
(0.02, 0.85) for conservativeness, as the system is highly
coupled and very prone to non-minimum phase transmis-
sion zeros [37], which is a property of the system as a
whole, and not of each individual transfer function.

• Dynamic Matrix Control (DMC) [3]. It consists of a
linear MPC around the operation point of u1 = u2 = 2.5
V, chosen for being at the middle of the input range,
and thus being a good step response model for the whole
operating range of the four-tank system, as the system
equilibrium point grows monotonically in function of
positive pump voltages. Also, the four-tank system is
well-behaved dynamically, therefore the step response
of one operating point is a close estimate to other step
responses. The DMC was obtained by applying a step
of magnitude 0.2 at the aforementioned operation point
and recording Ny samples of the step response to place it
directly in the DMC G matrix, according to the procedure
in [3]. The optimization problem solved in the DMC
iteration is exactly the same as in the PNMPC, with the
same normalized variables.

• APC consists of a Generalized Predictive Controller [3]
where the discrete transfer function is obtained online
by linearizing a neural network with external dynamics
[1]. The coefficients of the transfer function are obtained
directly through the output gradients with respect to the
inputs. Details for the architecture and training of the
feedforward neural network utilized for this comparison
are available in Section VI-D of the supplementary ma-
terial.

Fig. 8 shows that the DMC was slightly slower than the
ESN-PNMPC, which was more agressive for larger changes
in reference, such as at k = 400. Table II shows the IAE for
the control task from Fig. 8, where ESN-PNMPC achieves the
lowest tracking error, both in total, and for each controlled
variable. Also, the ESN-PNMPC had a lot more ease at
adjusting to the same set-point, parting from exactly the same
initial condition, as seen at the beginning of the plot. This
result is expected theoretically, as the DMC depends on the
step-response of one operating point (thus having the matrix
G fixed [3]), whereas ESN-PNMPC updates these matrices
at each time step. An unconstrained DMC is equivalent to a
PID controller [3], just as an unconstrained PNMPC can be
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Fig. 8: Comparison between the ESN-PNMPC, a DMC con-
troller, a PI controller and the APC for the four-tanks problem.
The reference signal is given by a dashed orange line. Left:
the control results for 500 time steps are shown, where the
first two upper plots correspond to the levels of tank 1 and 2,
respectively, while the third plot shows the corresponding pair
of control actions for each controller (with u2 in dashed line).
Right: the initial 70 time steps from the left plot. Lower plot
shows the IAE over simulation time for each method.

seen as an adaptive controller (because G changes over time).
Systems with more expressive nonlinearities better expose the
advantage of employing nonlinear controllers (for instance,
a Continuous Stirred Tank Reactor (CSTR) [41]), but this
result from the four-tanks system is a valid example. Also,
the DMC performs well, almost close to the PNMPC, due to
the strategical operating point utilized, as mentioned earlier.

As for the PI controller, since it is linear by nature, the
controller needs to be designed regarding a (family of) linear
system(s). In turn, a nonlinear controller such as the PNMPC
can ideally adapt to any operating point, which is a reason for
the performance of the ESN-PNMPC being superior.

The ESN-PNMPC achieved better performance in terms of
IAE than the APC, with the exact same MPC parameters.
The APC controller reduces the nonlinear control problem
into a pure GPC problem using a transfer function, while the
PNMPC works with trajectory linearization instead [26]. The
APC showed a worst case execution time of 0.41 seconds,
and a mean execution time of 0.2 seconds, which is in the
same order of magnitude as the ESN. This is explainable by
the fact that the ESN model has more states, and therefore a
more complex output-to-input gradient to calculate than the

TABLE II: Tracking error in relation to PI controller, Linear
MPC (DMC) and APC (four-tanks problem).

ESN-PNMPC PI DMC APC
IAE 375.56 540.45 473 396.34

IAE (h1) 203.50 321.04 290.76 251.91
IAE (h2) 172.06 219.41 182.24 144.43

feedforward NN with external dynamics of APC. Also, in
APC, the gradient is only calculated once per time step, to
obtain the linearized transfer function, while the PNMPC must
calculate the gradient over the whole prediction horizon, as it
is based on trajectory linearization. Despite this difference in
both approaches, the total control time for both controllers
was in the same order of magnitude. Notice that the APC
strategy itself is suitable to input-output dynamic models, but
not to models such as the ESN. For APC, the transfer function
coefficients are directly obtained by the neural network gradi-
ents. This is not the case of RNNs, which would require the
chain rule for recursively computing the gradient. Finally, we
expect that for more nonlinear, complex plants and cases of a
restricted amount of training data, the ESN-PNMPC approach
will increase its advantage in relation to APC, since the former
can model a wide range of dynamic systems from data very
well and with relative ease [9], [10], [11].

D. Oil Production Platform

The oil production platform application considered here
consists of a composition model of two gas-lifted oil wells and
one riser, connected by a manifold [12]. Previous applications
of ESNs in oil and gas include [42], [12], [4]. Overall, the
whole system has 120 algebraic variables, 10 state variables,
5 input variables, and exactly 5 boundary conditions4.

1) Problem Formulation: The problem for this case study
is akin to a control problem addressed in [12]. The problem
consists in manipulating the choke valves of well 1 and
well 2 (uch,1, uch,2) to track a setpoint signal in each well
bottom-hole pressure (Pbh). It is important to reiterate that any
problem with a quadratic cost function and linear constraints
is solvable by the ESN-PNMPC, which also includes econo-
metric formulations (e.g., maximize the net present value). To
formulate this tracking problem in the context of predictive
control, we use the following quadratic cost function:

J =

Ny∑
j=1

(q1e
2
1[k + j|k] + q2e

2
2[k + j|k])

+

Nu−1∑
j=1

(r1∆u2
ch1, + r2∆u2

ch,2), (43)

where:

e1[k + j|k] = P̃bh,1[k + j|k]− Pbh,1[k + j|k], (44)

e2[k + j|k] = P̃bh,2[k + j|k]− Pbh,2[k + j|k], (45)

and P̃bh,i is the setpoint for the corresponding bottom-hole
pressure Pbh,i of well i.

4The system model is described in more details in Appendix B of the
supplementary material (attached to the current paper submission).



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

In this specific case, we do not deal with output constraints.
However, constraints related to valve limitation and rate lim-
iting are added to the formulation:

0.01 ≤ uch,1, uch,2 ≤ 1 (46)
−∆umax ≤ ∆uch,1,∆uch,2 ≤ ∆umax. (47)

By default, just as in the four-tank experiment, ∆umax = 0.2.
The ESN and the PNMPC consider a sampling of 1 min for
the platform, which is suitable for such applications.

2) Identification of the Platform: The datasets are gen-
erated by exciting the system with the APRBS [1] for
both inputs uch,1, uch,2. An example is shown in sec-
tion C of the Appendix. The training dataset is com-
posed of 10, 000 instances in the form of input-output pairs
{((uch,1, uch,2), (Pbh,1, Pbh,2))}. A validation set of 10, 000
instances is employed to empirically find the hyperparameter
values for a 400-unit ESN with the lowest RMSE validation
error, yielding: a leak rate of 0.7, an input and bias scaling of
0.1, and a spectral radius of 0.999. This parameter setting was
not critical for this task, so a refined grid search was not nec-
essary. All the output variables were scaled from the interval
[170, 220] to [0, 1] before training. The prediction performance
of the ESN was evaluated on 10, 000 test instances, presenting
a RMSE of (0.031, 0.035) for both output variables. Note that
the real test of this trained model is done within the control
task of ESN-PNMPC, presented in Fig. 9.

3) PNMPC Setup: After training the ESN model as de-
scribed in the previous section, we tuned the PNMPC for this
application. To decide the prediction horizon, we executed an
open-loop test which showed that the system reaches steady-
state after 30 time steps (minutes). For each prediction window
to include a portion of steady-state time, we set the prediction
horizon to be 40 time steps. The control horizon has length 5,
chosen as a sixth of the prediction horizon [3]. We have also
tuned the filter parameters K and ω so that the pole a = 0.3
is induced for each variable, as a smaller value for a means a
quicker error response while maintaining a certain degree of
robustness. As with the four-tank application, Q and R are
the identity matrix.

4) Tracking and Disturbance Rejection: The executed iden-
tification of the ESN considers that the gas-lift source pressure
of the second well Pgs,2 remains static at 200 bar for all train-
ing samples. Note that this pressure constancy does not happen
in real-world oil platforms. Here, the controller has to track an
APRBS reference signal, besides rejecting disturbances that
occurs in Pgs,2. This disturbance is simulated as pressure
drops of 10 bar that happen at times k ∈ {750, 900, 1100},
which changes the model drastically (and nonlinearly [43])
when compared to the four-tank system, where a disturbance
is directly added to the state equation. The simulation run lasts
1500 time steps.

In Fig. 9, the first plot shows the tracking results of the
experiment, while the second one shows the a priori and a
posteriori errors of each well bottom-hole pressure. We can
infer that the model changes more drastically as the pressure
keeps dropping, and that this parametric change affects our a
priori prediction less than in the four-tank case. Even then,
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(a) The topmost subplot depicts the tracking experiment, where
each well bottom-hole pressure (Pbh,1 as a blue, solid and thin
line, and Pbh,2 as a green, solid and thick line) is plotted together
with their set-points (dashed lines of matching color and thickness)
over time; the second subplot contains the control action of each
well choke valve (uch,1 : blue and thin, uch,2 : green and thick);
and the third plot represents the disturbance at the gas-lift source
pressure Pgs,2 over time.
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(b) The topmost subplot contains the a priori ESN prediction
errors of each well bottom-hole pressure (Pbh,1, Pbh,2), and
the bottom-most plot contains the relative error of the pressure
predictions after filter correction is applied. The vertical dashed
lines mark each moment when Pgs,2 changes value.

Fig. 9: Results for a 1500 time steps run where the gas-lift
source pressure of the second well (Pgs,2) is depleting 10 bar
at times k = {750, 900, 1100} as disturbance. Subfigure 9a
shows the full tracking and disturbance rejection results, while
subfigure 9b presents the a priori and a posteriori error for all
well pressures.

the prediction filter manages to decrease the prediction error
to less than 4% through the whole simulation. Note that the
third pressure drop at k = 1100 results in a large perturbation
manifested later (at setpoint change) in the a priori error
plot. In this scenario, the filter efficiently corrects the model
predictions, reducing the a posteriori error. Additionally, the
dynamics of the two wells during tracking is well behaved,
despite the influence of the disturbance. For the simulation
in Fig. 9, the ESN-PNMPC achieved a total IAE of 1918.83,
which results from the IAE of (757.68, 1161.15) for each well
bottom-hole pressure.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

700 750 800 850 900 950 1000 1050 1100175
180
185
190
195
200
205
210
215

P_
{b
h,
1}

 (b
ar
)

 PNMPC
 DMC
ref

700 750 800 850 900 950 1000 1050 1100
simulation time (time steps)

185

190

195

200

205

210

215

P_
{b
h,
2}

 (b
ar
)

Fig. 10: Comparison between the ESN-PNMPC, and a DMC-
type MPC for the oil production platform during pressure
disturbances applied to the gas-lift supply, between time steps
700 and 1100 of Fig. 9a. The reference signal is given by
the dashed cyan line for the bottom-hole pressures Pbh,1 and
Pbh,2 in the upper and lower plots, respectively. The IAE
was (271.22, 210.64) (total: 481.86) for the ESN-PNMPC, and
(289.68, 429.16) (total: 718.84) for the DMC.

We have also designed a DMC for the control of the two
wells in the platform, using the same strategy of obtaining a
step response at the operating point uch,1 = uch,2 = 0.5,
at the middle of the control range, and solving the same
optimization problem for both controllers. Both controllers
were simulated under the exact same conditions (reference
signal and disturbance). The total IAE achieved by the DMC
was 1961.4, corresponding to the IAE of (682.9, 1278.5) for
each well, which was slightly better for Pbh,1 and slightly
worse for Pbh,2 compared to our approach. Fig. 10 shows the
results of both controllers between time steps 700 and 1100.
This region is depicted because it is exactly when the changes
in Pgs,2 happen, providing a disturbance to the controller.
The first 50 time steps are a good sample of what generally
happens in the simulation, where disturbances are not present.
Even though the DMC is faster, it is also more oscillatory and
agressive, therefore more prone to overshooting.

This cannot be expressed with IAE alone. The rest of the
plot, which is when the disturbances happen, showcase how
our approach can reject disturbances more efficiently, as Pgs,2
affects Pbh,2 more intensely. The qualitative differences in
disturbance rejection between both controllers can be clearly
seen after k = 950 in Fig. 10. The theoretical explanation
for this improvement in ESN-PNMPC is that the DMC uses
a single step response of a single operating point as a model,
while ESN-PNMPC updates G at each time step according to
the free response trajectory, better adapting to changes. Also,
the presence of the first order error correction filter helps in
rejecting any bias from disturbance, while this implementation
of DMC [3] uses only the current modeling error to correct
the free response.

V. CONCLUSION

This work has proposed an extremely efficient Reservoir
Computing-based control scheme for control of unknown

nonlinear dynamic systems, namely ESN-PNMPC, which
consists of: an ESN which provides a fast, efficient system
identification of dynamic systems; and the Practical NMPC
which advocates the full nonlinear precision for the free
response and linear approximation of the forced response.
Our proposal relies on a new recursive formulation for the
computation of derivatives of the output signals with respect
to the inputs, granting an efficient calculation of the forced
response and ultimately a computationally cheap control action
when compared to the original PNMPC [15].

We have considerably extended our previous work [4], for
instance: deriving a methodology to tune the filter parameters;
analysing the ESN hyperparameters effect on control perfor-
mance; showing the application of the proposed ESN-PNMPC
in two different scenarios, namely the four-tank system and a
two-well one-riser system; and comparing it to other control
approaches, such as: LSTM with PNMPC, PID, DMC (Linear
MPC) and Approximate Predictive Control (APC).

Given the good results achieved so far, as future work,
we hope to employ ESN-PNMPC for controlling real world
plants, dealing with real-time computation issues and produce
an implementation into a micro-controller. A formal stability
analysis for ESN-PNMPC is also currently being developed
by the authors.
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VI. SUPPLEMENTARY MATERIAL FOR THE PAPER ”ECHO
STATE NETWORKS FOR PRACTICAL NONLINEAR MODEL

PREDICTIVE CONTROL OF UNKNOWN DYNAMIC
SYSTEMS”

A. Four-tank System
The four-tank system [37], widely used as a benchmark

of multivariate and nonlinear control systems with coupled
variables, is depicted in Figure 11. The system consists of
two pumps j ∈ {1, 2}, two directional valves, where γj is
how much of the pump flow enters tank j and not the other
tank (j + 1 or j + 2) and four tanks i ∈ {1, 2, 3, 4}. Each
pump has its rotation and flow controlled by voltage uj , with
j being the index of the pump. The flow of pump 1 enters
both tank 1 and tank 4, while the flow of pump 2 enters tanks
2 and 3, both distributed through directional valves. As tanks
3 and 4 are positioned above tanks 1 and 2 respectively, and
each tank has a hole in its bottom, tank 2 (tank 1) is also
influenced indirectly by pump 1 (pump 2). This connection
between the pumps and the tanks is the source of the coupling
in the system.

The four-tank system is described by the following equa-
tions:

ḣ1 =
γ1k1u1 + ω3 − ω1

A1
(48)

ḣ2 =
γ2k2u2 + ω4 − ω2

A2
(49)

ḣ3 =
(1− γ2)k2u2 − ω3 + ωdist,3

A3
(50)

ḣ4 =
(1− γ1)k1u1 − ω4

A4
, (51)

where: hi is the level and Ai is the area of the transverse
section of tank i; kj is how much voltage is converted to
volumetric flow rate in pump j; γj is the opening of the
directional valve accompanying pump j related to the lower
tanks; and ωi is the outflow of tank i, calculated as:

ωi = ai
√

2ghi, (52)

where ai is the bottom orifice area for tank i. The values
of each parameter, as well as the initial conditions to each

Tank 1
Tank 2

Tank 3
Tank 4

Pump 1 Pump 2

Fig. 11: Representation of a four-tank system. Adapted from
[44]. Description is given in the text.

state in the problem formulation, originate from [37], in
a configuration that induces a non-minimum phase zero to
the initial operating point. The disturbance ωdist,3 is a flow
disturbance applied in tank 3 at a given time, which is used
to test the disturbance rejection aspects of the controller.

B. Oil Production Platform

The considered platform application consists of two wells
and one riser, being the same one that was used in our previous
work [12]. Another work that uses ESNs in oil and gas
applications is [42], which presents a soft sensor for remote
estimation in offshore production platforms.

We employ a compositional model of two gas-lifted oil
wells and one riser, connected by a manifold. Figure 12 depicts
the platform, whose components have the following properties:

• Wells: Each well is modeled as the reduced order model
in [43]. The model considers two fluid phases (gas and
liquid) and two control volumes: the annulus, containing
the gas-lift; and the tubing, containing the production
fluid. These define the three states of the well model:
the gas in the annulus ṁG,a, the gas in the tubing ṁG,t

and the liquid in the tubing ṁL,t; each state is calculated
by the following mass balance equations:

ṁG,a = ωG,in − ωG,inj (53)
ṁG,t = ωG,inj + ωG,res − ωG,out (54)
ṁL,t = ωL,res − ωL,out. (55)

The gas flow ωG,in is injected into the annulus, and
ωG,inj is the gas flow injected from the annulus to the
main tubing. The flow defined by ωres has its source
on the oil reservoir attached to the well, and ωout defines
the outlet flows. Each of these flows is calculated through
the Bernoulli orifice equation, which is a function of the
pressure at certain points in the well and the choke valves

gas-lift source gas-lift source

Well 2Well 1

Oil and Gas Reservoir

Manifold

Outlet

Riser

Riser Production Choke

gas-lift valve 1
gas-lift valve2

Well Production Chokes

z

Fig. 12: Representation of an oil platform containing two wells
and one riser. From [12].
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involved, which is the gas-lift choke valve ugs for ωG,in
and the wellhead choke valve uch for the outlet flow
ωout. The well model has 42 algebraic variables, 3 state
variables, 2 input variables, and 3 boundary conditions,
which are the pressure at the gas-lift source Pgs, the
oil reservoir pressure Pres, and the well outlet pressure,
which is connected to the rest of the system through the
manifold. As the dynamic model of the wells are rather
complex to be presented here, refer to [43] for more
details on the well model.

• Riser: The riser is modeled as a reduced order model
developed in [45]. In the same vein as the well model,
two control volumes are considered: a horizontal and
a vertical pipeline. The states of the system are the
gas and liquid mass that are present in each control
volume. The system is calculated using the modeling
logic as the well: each state is modeled as a mass balance
of an input and an output flow. The input flow is a
boundary condition, which in this case has its source
on the two wells below, as shown in Figure 12. The
output flow is the production of the whole system, being
regulated by the riser production choke valve opening
z and the output pressure, which is also a boundary
condition and generally corresponds to the pressure at
a separator of an FPSO (Floating Production Storage
and Offloading) vessel. The riser model possesses 4 state
variables, 36 algebraic variables, one input variable, and
three boundary conditions.

• Manifold: The manifold is modeled as proposed in [12].
In terms of modeling and equations, it corresponds to
equating the riser inlet pressure to each well output
pressure, and ensuring the riser inlet flow to be the sum
of both well flows, while disregarding any load loss due
to friction.

Overall, the whole system in Figure 12 has 120 algebraic
variables, 10 state variables, 5 input variables, and exactly 5
boundary conditions: the reservoir pressure Pres,i, i ∈ W =
{1, 2} of each well i, the gas-lift inlet pressure Pgs,i of
each well i, and the riser output pressure. The exact same
parameters as [12] are used, where the boundary conditions are
Pgs,1 = Pgs,2 = 200 bar and the output pressure is Po = 50
bar.

C. Datasets for ESN Training

In this section, we present the plot of the datasets employed
in training of both the four-tank and the oil platform system.

Figure 13 shows the data utilized to train the ESN for the
four-tank control problem. The first plot shows the levels h1

and h2, which were directly employed as control variables,
and the second plot shows the levels h3 and h4, which were
raised because of the MPC problem constraints. The third plot
shows the APRBS excitation signal employed in the system
for the manipulated variables.

Figure 14 depicts the data utilized for the platform problem,
where the first plot shows the controlled variables: each
well bottom-hole pressure. The bottom-most plot shows the
excitation signal utilized for each well choke valve.
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Fig. 13: Plot of the first 5, 000 training points for the four-tank
control problem.
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Fig. 14: Plot of the first 5, 000 training points for the platform
control problem.

D. Feedforward NN for Approximate Predictive Control

This section describes the NN model embedded in the
Approximate Predictive Control (APC). For the four-tanks
system, a feedforward NN with 2nd order external dynamics
is employed, as described below:

y[k + 1] = f(u[k],y[k],y[k − 1]). (56)

The network has a total of 10 inputs and 4 outputs, forming
a dynamic system with 8 states (i.e., the four tank levels
displaced in time twice).

The network has one hidden layer with 40 ReLu neurons,
trained with the exact same dataset that was employed for the
ESN (40, 000 time steps for training and validation, 10, 000
time steps for testing). The network was implemented in
Tensorflow/Keras, and trained with ADAM with a minibatch
size of 32, with a regularization parameter of λ = 10−8 for
weight decay. The stop criterion was 100 epochs after the
validation loss reaches a minimum, where the model with low-
est validation error is saved. We experimented with different
number of layers and neurons per layer, but a hidden layer
of 40 neurons had the best control performance, while being
faster in terms of computation time for being the smallest NN
among the tested ones. The final trained model had a test error
magnitude of around 10−3 for each output, which is similar
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to the error by the ESN. Notice that the network for APC is
harder to train than an ESN.


	Introduction
	Contributions

	Related Work
	Methods
	Echo State Networks (ESN)
	Model
	Training

	Practical Nonlinear Model Predictive Control (PNMPC)
	ESN-PNMPC
	Introduction
	Linearizer – Forced Response Derivation
	Error Correction Filter
	QP Problem


	Applications
	Introduction
	Error Metrics
	Model Error
	Tracking Error

	Four-tank System
	Problem Formulation
	Identification and Hyperparameter Analysis
	PNMPC Setup
	Results for Tracking and Disturbance Rejection
	Comparison with LSTM-PNMPC
	Comparison to Other Controllers

	Oil Production Platform 
	Problem Formulation
	Identification of the Platform
	PNMPC Setup
	Tracking and Disturbance Rejection


	Conclusion
	References
	Biographies
	Jean P. Jordanou
	Eric Aislan Antonelo
	Eduardo Camponogara

	Supplementary Material for the Paper "Echo State Networks for Practical Nonlinear Model Predictive Control of Unknown Dynamic Systems"
	Four-tank System
	Oil Production Platform
	Datasets for ESN Training
	Feedforward NN for Approximate Predictive Control


