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Hierarchical Generative Adversarial Imitation Learning with
Mid-level Input Generation for Autonomous Driving on Urban

Environments
Gustavo Claudio Karl Couto∗ and Eric Aislan Antonelo∗

Abstract—Deriving robust control policies for realistic urban
navigation scenarios is not a trivial task. In an end-to-end
approach, these policies must map high-dimensional images from
the vehicle’s cameras to low-level actions such as steering and
throttle. While pure Reinforcement Learning (RL) approaches
are based exclusively on engineered rewards, Generative Ad-
versarial Imitation Learning (GAIL) agents learn from expert
demonstrations while interacting with the environment, which
favors GAIL on tasks for which a reward signal is difficult
to derive, such as autonomous driving. However, training deep
networks directly from raw images on RL tasks is known to be
unstable and troublesome. To deal with that, this work proposes a
hierarchical GAIL-based architecture (hGAIL) which decouples
representation learning from the driving task to solve the au-
tonomous navigation of a vehicle. The proposed architecture con-
sists of two modules: a GAN (Generative Adversarial Net) which
generates an abstract mid-level input representation, which is the
Bird’s-Eye View (BEV) from the surroundings of the vehicle; and
the GAIL which learns to control the vehicle based on the BEV
predictions from the GAN as input. hGAIL is able to learn both
the policy and the mid-level representation simultaneously as the
agent interacts with the environment. Our experiments made
in the CARLA simulation environment have shown that GAIL
exclusively from cameras (without BEV) fails to even learn the
task, while hGAIL, after training exclusively on one city, was able
to autonomously navigate successfully in 98% of the intersections
of a new city not used in training phase. Videos and code available
at: https://sites.google.com/view/hgail.

Index Terms—Autonomous Driving, Generative Adversarial
Imitation Learning, CARLA Simulator, Bird’s-Eye View

I. INTRODUCTION

Commonly, Autonomous Driving (AD) has been imple-
mented using individual modules for perception, planning and
control organized in a pipeline [1]–[4]. However, learning
approaches have been on the rise, in an attempt to tackle the
complexities of AD in different scenarios, in simulation or
even in the real world. Most of the approaches are based on
Behavior Cloning (BC), which uses supervised learning on a
set of expert demonstrations collected offline [5]–[9], e.g., with
a human driver generating a set of input (observations) and
corresponding desired output pairs. The latter approach suffers
from covariate shift [10]–[12], since it can not teach robustly
the learning agent a trajectory which does not accumulate
errors.

Reinforcement Learning (RL) approaches to AD can learn
policies that do not present this covariate shift issue, since
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the agent is able to learn in interaction with the environ-
ment, considering the whole sample trajectories and not only
independent observation-action samples as in BC. However,
RL requires the definition of a reward signal, which can be
cumbersome to do it considering the complexity of a driver’s
behavior and its environment. Although Inverse RL can be
used for imitation learning purposes [13], it is expensive
to run since it executes RL in a loop. Learning in IRL is
computationally more expensive than just learning a policy
directly from expert demonstrations.

On the other hand, Generative Adversarial Imitation Learn-
ing (GAIL) [14] provides a way to train agents in interaction
with their environments, directly from expert demonstrations.
This approach has been validated in the CARLA realistic sim-
ulator for autonomous driving in urban scenarios previously
[15], showing it can scale to large environments. However, in
[15] only fixed routes were considered. Although the agent’s
architecture was general enough for dynamic routes, with
inputs such as the high-level command and the next point
of the sparse trajectory in the vehicle’s reference frame, the
network had limitations for learning a general policy for
dynamic routes, i.e., those that can change on the fly (turn left,
right, or go straight at an intersection) from the perspective of
the agent.

In [16], the authors show that training complex mathemat-
ical functions such as deep neural networks for online policy
learning based on complex input patterns from raw camera
images is unstable. This is because the reward signal is not
informative enough for training such large models. One of
the strategies employed by [16] to circumvent this limitation
is to decouple feature representation from policy learning. In
our context, the decoupling is achieved by learning a mid-
level representation of the vehicle’s raw camera images. For
instance, Bird’s-Eye View (BEV) representations of the road
ahead of the vehicle have been used as mid-level input to
trajectory generation and motor control networks in [7] and
[17], respectively. In BEV representation, the scene from the
camera is projected onto a top-down view, and regions of
interest in the image, such as vehicle lanes and sidewalks,
are segmented into different colors [2]. Using BEV as input
to the control policy, the idea is to make policy learning focus
on the navigation problem, since it will use a more abstract
and simple view of the road ahead.

One of the advantages of such approach is enabling transfer
to real-world by a relatively easy process: it requires mapping
the real-world images to the same abstract representation
used to train the agent in simulation. Besides, training agents
with mid-level visual inputs such as BEV and others (e.g.,
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optical flow, depth, semantic segmentation, and albedo) make
policies learn faster, generalize better and achieve higher task
performance [18]. Other works employ semantic segmentation
for semantic driving [19]–[21], offering supporting evidence
that mid-level inputs to agents are useful for realistic down-
stream active tasks [18]. So far, BEV has been employed
for autonomous driving in urban scenarios in [17] and [7].
However, they generate BEV input by using an algorithm
which has to access a known map of the city. In contrast, in our
work, we consider a mid-level predicted BEV input, feeding
the agent’s policy, that is generated by a separate network that
learns simultaneously with the policy network in a hierarchical
GAIL (hGAIL) architecture. The proposed hGAIL consists of
two modules: a learning module for mapping camera images
to BEV representations; and a policy learning module based on
GAIL that controls the vehicle by using the predicted BEV as
mid-level input. The first module uses Conditional Generative
Adversarial Nets (GANs) [22] and U-nets to map the images
obtained from three frontal vehicle’s cameras to the mid-level
BEV input. The latter module, based on GAIL, outputs steer,
acceleration and break signals to drive the vehicle based on
the GAN’s output. Thus, although our agent produces a mid-
level representation, it still pertains to the class of end-to-
end models, since the raw camera images are fed as inputs
to the hGAIL architecture. Additionally, the GAIL module’s
cost function is augmented with a behavior cloning loss [23]
in order to stabilize the policy learning. Both GAN and GAIL
networks learn simultaneously, though with their own cost
functions, while the agent interacts with the CARLA simu-
lation environment for urban driving. This approach ensures
that both the policy and representation networks are trained
using on-policy data, learning from the agent’s mistakes.

This work contributes by:

1) overcoming the difficulties of policy learning directly
from raw pixels for the GAIL agent in autonomous
driving. This is achieved by decoupling representation
learning from the driving task, through learning a Bird’s-
Eye View (BEV) representation of the input, which can
be processed more efficiently by GAIL.

2) proposing an end-to-end hierarchical architecture based
on both GAN and GAIL (hGAIL) for autonomous urban
driving. The online nature of GAIL allows the agent
to experience out-of-distribution samples not existing
in the expert dataset, different from Behavior Cloning
approaches [24]. After training, the hGAIL agent only
has access to a sparse trajectory, being able to predict
a more refined desired trajectory that is used by the
policy to directly output the steering and throttle motor
actuators, unlike approaches that output the trajectory
and use a nonadaptive controller to move the vehicle
[7], [25].

3) extending previous work that is applicable to fixed routes
[15] to a more skilled agent able to follow dynamic
routes, making the vehicle able to change the route on
the fly. In addition, this work also tackles navigation in
cities with pedestrians and other vehicles, and respecting
traffic lights, unlike [15].

4) proposing a GAN network for BEV mid-level repre-
sentation generation of three channels (desired route,
drivable area, and lane boundaries) based on inputs
from the raw vehicle’s frontal camera images, sparse
trajectory and high-level command. This approach en-
ables simultaneous representation learning with policy
learning in an online manner, without degrading the
GAIL training process.

II. RELATED WORKS

A. Behavior Cloning (BC)

The authors of works [8] and [9] utilized Behavior Cloning
(BC) for Autonomous Driving (AD) in the CARLA simulator.
A large dataset of human driving was collected and augmented
using image processing techniques to train end-to-end policies
conditioned on the desired route. Further advancements in BC
were made in [26], which used a large deep ResNet network
for feature extraction and fused data from camera, LiDAR,
and radar to generate feature maps.

B. Reinforcement Learning (RL)

In [27], an RL agent was trained and tested in a 2D simu-
lator, CARLA, and a real-world car racing task, highlighting
the potential use of auxiliary models to address the weakness
of RL in needing large amounts of environment interactions.
In [17], RL is employed with a customized reward function
to train an agent based on the mid-level BEV representation
as input, during the first training phase. Afterwards, using
the trained agent as an online expert, they trained a second
agent through apprenticeship learning, but now in an end-to-
end approach with input directly from the vehicle’s cameras.
Their method evaluated using CARLA surpassed the default
benchmarks trained by BC.

C. GAIL

The authors in [28] used Generative Adversarial Imitation
Learning (GAIL) with simple affordance-style features as
inputs to reduce cascading errors in behavior-cloned policies
and make them more robust to perturbations. Raw LiDAR
readings and simple road features, such as speed and lane
center offset, were mapped to turn-rate and acceleration to
model human highway driving behavior in a realistic highway
simulator. The experiment successfully reproduced human
driver behavior while reducing the risk of collisions.

In [29], model-based GAIL (MGAIL) was used with a
large-scale expert dataset (100,000 miles) from San Francisco
city, and applied to the task of dense urban self-driving.
The discriminator and generator in their MGAIL model con-
sists of Transformer networks, which combine different types
of inputs: roadgraph points, traffic light signals, and other
objects’ trajectories. They introduce an hierarchical model
which integrates a high-level graph-based search (to generate
the intended trajectory) with a low-level transformer-based
MGAIL policy. Besides, they do not learn mid-level input
representations from raw camera images as hGAIL in this
work, but use a pretrained independent robotic perception
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system to generate input features. Additionally, our controller
in hGAIL learns with expert samples generated in the CARLA
simulator corresponding to only 36 minutes (8 km) of driving.
In theory, transferring the trained policy in hGAIL to a real-
world setting would require only replacing the BEV network
by another network trained on real images.

D. BEV Mid-level representation

Reinforcement learning enables an agent to be trained in a
closed-loop fashion, resulting in more robust agents. However,
this robustness comes with the cost of instabilities that prevent
the use of very deep networks, such as ResNet [30]. In [16],
the authors aim to decouple representation learning from the
training of reinforcement learning as a solution to train agents
that can process high-dimensional raw inputs, such as images
from cameras.

In [25], a hierarchical driving model is proposed, consisting
of a driving intention module and trajectory generation mod-
ule. The former learns to generate the future trajectory with a
GAN, whose generator is fed with an image from a monocular
camera and a local map, cropped from an offline map using
the GPS position. The intention map is combined with LiDAR
data to generate a potential map, which is their mid-level
input representation (similar to BEV), subsequently fed to a
controller module trained to imitate a set of demonstration
trajectories. While their BEV prediction has only one channel
with the desired trajectory (intention), our BEV in hGAIL
produces also other two channels for drivable area and lane
boundaries. However, in our approach, we do not combine
LiDAR data with the BEV prediction. The final output of their
model corresponds to a trajectory function that is used by a
nonadaptive controller to drive the vehicle, whereas hGAIL
outputs directly the values for the steering and throttle motor
actuators. The training of their networks are offline, opposed
to our online training of hGAIL, which is more challenging
with respect to the learning task of directly mapping raw
frontal cameras images to motor actuators. They evaluate their
method on CARLA and also on a real vehicle.

A similar modular approach is explored in [24] in the
CARLA simulation environment, which combines a predicted
Bird’s-Eye View representation with a pretrained trajectory of
0.5-meter resolution to serve as inputs to a policy network
trained with Behavior Cloning. To generate the BEV, first,
the raw image is segmentated using a pretrained segmentation
network; then, its output is transformed by an U-net into
an BEV top-down perspective. It is worth noting that our
BEV generation in hGAIL uses a Conditional GAN that maps
directly from raw camera images to the final BEV prediction,
while [24] uses a segmentation network as an intermediate
step. Additionally, our BEV prediction includes the desired
trajectory as a BEV channel, while the BEV prediction in
[24] does not include this information, needing access to the
points of a dense trajectory as inputs to the policy. In contrast,
after training, our hGAIL agent only access a sparse trajectory
of 50-meter resolution on average, which is 100 times more
sparse than the one used in their work. Besides, they train
the BEV network offline in a supervised way and before the

policy network is trained by conventional Behavior Cloning,
also offline. Notice that, in our work, both BEV and policy
networks learn online in an integrated way simultaneously and
in an adversarial way. Thus, covariate shift situations are better
handled with hGAIL, since the policy can learn with samples
not included in the expert dataset.

The BEV input representation in hGAIL is inspired by [7],
which trains a system to autonomously drive a vehicle on
CARLA using a Bird’s-Eye View representation as input. This
BEV representation, like our own, contains a road and route
representation from a top-down, agent-centered perspective.
However, after training, hGAIL does not need anymore to
access the city map to generate the BEV of the vehicle, as
this is done by a GAN network, unlike in [7]. Based on
this BEV input, in their work, a neural network is trained
offline to output the trajectory to be followed by a nonadaptive
controller. They also employ data augmentation and auxiliary
losses in this training. In contrast to this, our hGAIL agent
learns both the policy and the BEV representation online and
simulatenously, i.e., in a closed-loop training process, mapping
raw frontal camera images direcly into motor actuator values
(steering, and throttle). Thus, the controller also has to be
learned in hGAIL, unlike [7] which learns only the trajectory
offline.

The work in [19] uses the output of a scene segmentation
network as a mid-level input representation. This enables the
transfer of the agent’s policy to the real world, since a similar
network can be used to generate the mid-level input from
images of real scenes.

Our work is the first instance, to our knowledge, where
a GAIL is trained using a mid-level input representation
generated by a learning module to tackle the intricate task
of autonomous driving navigation. Previous works also show
that policies with mid-level representations as input can be
trained on a simulator, and subsequently transferred to the
real world. This is a cost-effective and safe way to perform
closed-loop training of agents (since infractions during training
of the agent occur in simulation only), in particular, by the
GAIL method which provides an interactive learning based
on expert demonstrations.

III. METHODS

A. Conditional Generative Adversarial Networks - CGAN

CGANs are composed of two neural networks, a discrim-
inator D and a generator G. The function of G in a CGAN
[22] is to translate an image x into an image y by mapping
both x and a random noise vector z into an output image
G : {x, z}− > y. Both D and C seek to optimize the same
objective function:

E
x,y

[log(D(x, y))] + E
x,z

[log(1−D(x,G(x, z))], (1)

where G tries to minimize it, while D seeks to maximize it.
Additionally, a L1 distance loss function is added to the final

objective, making the generator network G also learn from the
true label y as it would happen in a supervised learning task,
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modeling low-frequency characteristics of images. The result-
ing method, PatchGAN [22], divides the image into multiple
patches to be classified by the discriminator individually and,
thus, requires fewer parameters.

The CGAN is used in our work to generate the Bird’s-Eye
View (BEV) image representation from the agent’s sensors
such as frontal cameras and GPS, to be detailed later.

B. Generative Adversarial Imitation Learning - GAIL

Mathematically, GAIL 1 finds a saddle point (π,D) of the
expression:

E
πE

[D(s, a)]− E
π
[D(s, a)]− λH(π)− λ2Lgp, (2)

where D : S × A → (0, 1), S is the state space, A is
the action space; πE is the expert policy; π is the agent’s
policy ; H(π) is a policy regularizer controlled by λ >= 0
[31]. The discriminator D will try to increase (2), while π
seeks to minimize it; and Lgp is a loss that penalizes the
gradient’s norm, constraining the discriminator network to the
1-Lipschitz function space, according to [32]. The above equa-
tion is the Wasserstein loss, used to alleviate vanishing gradient
and mode collapse problems, using the Wasserstein distance
[32] between the policy distribution and expert distribution, as
also done in [33], [34].

C. Bird’s-Eye View (BEV) representation

The BEV of a vehicle represents its position and movement
in a top-down coordinate system [7]. The vehicle’s location,
heading, and speed are represented by pt, θt, and st re-
spectively. The top-down view is defined so that the agent’s
starting position is always at a fixed point within an image
(the center of it). Furthermore, it is represented by a set of
images of size W ×H pixels, at a ground sampling resolution
of ϕ meters/pixel. The BEV of the environment moves as
the vehicle moves, allowing the agent to see a fixed range of
meters in front of it. For instance, the BEV representation for
the vehicle whose three frontal cameras are shown in Fig. 1(a)
is given in Fig. 1(c), where the desired route, drivable area and
lane boundaries form a three-channel image.

IV. AGENT

Our agent’s architecture (Fig. 2) is based on hierarchi-
cal Generative Adversarial Imitation Learning (hGAIL) for
training policy and mid-level representation simultaneously.
There are two main parts of hGAIL: the conditional GAN
that generates the BEV representation based on input from the
vehicle’s frontal cameras, trajectory and high-level command;
and the GAIL that learn the agent’s policy by imitation
learning based on input from the BEV representation generated
by the first CGAN module, current vehicle’s speed, and the
last actuator values.

1More details on GAIL are given in Appendix VI-A.

A. BEV generation with CGANs

The Conditional GAN module, used to transform the images
from the frontal cameras into a top-down view representation,
has two different networks named Discriminator and Genera-
tor, whose architectures can be seen in Appendix VI-B .

1) Input representation: The input for the CGANs cor-
responds to the 192x192 resolution RGB images from the
three frontal cameras represented in Fig. 1(a) and the sparse
trajectory visual representation from Fig. 1(b) that are stacked
to generate a 10x192x192 image, i.e., with 10 channels. The
goal of the CGAN’s generator is to translate this stack of im-
ages into the 3-channel BEV representation seen in Fig. 1(c).
In addition to this RGB input image, the discriminator also
receives the 3x192x192 BEV image, which can come from
either the generator as fake or from the training set as real.
Other inputs to the generator are the 5 points from the sparse
trajectory, one point behind the vehicle and 4 points ahead of
it, represented as a vector and the high-level command as a
4-dimensional one-hot encoding vector (”lane follow”, ”left”,
”right”, ”straight”).

The architectures of both Generator and Discriminator are
described in Appendix VI-B.

B. Policy learning with GAIL

The generator in the GAIL module iteratively seeks the
θ parameters of the policy πθ(.|s) that minimizes (2), while
the discriminator seeks to maximize it. To assist the agent’s
learning, loss terms for stimulating exploration are added as
described after the representations for the input, output, and
architecture are presented.

1) Input representation: The input s to the agent’s policy
is a three-channels 192x192 image generated by the GAN
network, corresponding to the mid-level BEV representation
of the vehicle in its current position. In addition, the current
vehicle’s speed and the last value of the policy actuators (last
acceleration and steering) are also fed as input further down
in the network layers (to the first fully connected layer).

2) Output representation: The vehicle in CARLA has three
actuators as: steering ∈ [−1, 1], throttle ∈ [0, 1], and
brake ∈ [0, 1]. Our agent’s action space is a ∈ [−1, 1]2,
where the two components of a correspond to steering and
acceleration. Braking occurs when acceleration is negative. In
this way, by modeling brake and throttle with one dimension,
the agent is not allowed to brake and accelerate simultaneously
[35]. Instead of using the Gaussian distribution for the policy’s
actions, common choice in model-free RL, we employ the
Beta distribution B(α, β) due to its bounded support, which
allows us to model bounded continuous action distributions,
usually found in real-world applications such as autonomous
driving [35], where the action space is not unbounded (i.e., the
gas pedal can be actuated up to a certain limit). Besides, the
policy loss LP can be explicitly computed since clipping or
squashing is not used to enforce input constraints (in the case
of Gaussian distribution). Furthermore, the Beta distribution
allows the policy to act in extreme situations of vehicle driving,
where sharp turns and sudden braking are necessary, as its
parameters α and β, which are defined as outputs of the policy



5

(a) Frontal Cameras (b) Sparse trajectory

(c) Bird’s-Eye View representation (BEV) channels

Fig. 1. a) Images from three frontal cameras located at the left, central, and right part of the vehicle, respectively. They were taken after the first few
interactions of the agent in the CARLA simulation environment. Each camera produces a 256x144 RGB image. b) The corresponding sparse trajectory visual
input captured at the same frame. The points from the sparse trajectory and the highlighted vehicle position are plotted as circles with a radius of 10 pixels,
using the same scale (pixels per meter) and perspective as the BEV representation. When the image is fed to the CGAN, it is represented with only one
channel and a size of 192x192 pixels. c) The three channels of BEV image that our agent employs, computed at the same instant shown in (a). From left to
right, the channels correspond to: desired route, drivable area, and lane boundaries. The last image shows all three channels combined in different colors.

Fig. 2. Hierarchical Generative Adversarial Imitation Learning (hGAIL) for policy learning with mid-level input representation. It basically consists of
chained CGAN and GAIL networks, where the first one (CGAN) generates BEV representation from the vehicle’s three frontal cameras, sparse trajectory
and high-level command, while the latter (GAIL) outputs the acceleration and steering based on the predicted BEV input (generated by CGAN), the current
speed and the last applied actions. Both CGAN and GAIL learn simultaneously while the agent interacts to the CARLA environment. The discriminator parts
of both networks are not shown for the sake of simplicity.

neural network πθ and control the shape of the distribution,
can be tuned to produce such characteristic vehicle behaviors.

The architectures of both Generator and Discriminator are
described in Appendix VI-C.

3) BC augmentation : The generator loss in GAIL
is also augmented with a Behavior Cloning (BC) loss LBC

(−EπE
[log(π(a|s))]) using the available expert samples. The

underlying idea is to provide the training process of the policy
with useful and informative gradients, especially when the
discriminator is not yet fully trained. This concept and the
practical implementation follows [23].

4) Encouraging Exploration: During training, the agent is
encouraged to explore the environment through two objectives,
as in [17]:

Lent + Lexp (3)

where: the first loss function corresponds to the entropy loss
commonly used to promote exploration:

Lent = −λent ·H(πθ(.|s)), (4)

Minimizing Lent means maximizing entropy and thus un-
certainty for the policy distribution πθ, which stimulates the
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agent try more diverse actions since the policy distribution
for a certain state s does not become too certain too quickly
in the process. It also drives the action (policy) distribution
towards a uniform prior (which represents maximum entropy
and uncertainty) since it is equivalent to minimizing the KL-
divergence to the uniform distribution defined in the support
of the Beta policy [−1, 1]:

H(πθ) = −KL(πθ||U(−1, 1)), (5)

We can also bias the agent’s learning with priors that signify
meaningful behaviors for an autonomous vehicle and helps to
improve and speed up the overall agent’s training from scratch.
This is accomplished with the following exploration loss Lexp

[17]:

Lexp = λexp · 1{T−Nz+1,...,T}(k) ·KL(πθ(.|s) || pz), (6)

where 1 is the indicator function and z ∈ Z is the terminal
event that finishes the episode. Some examples of events
in Z would be collision, route deviation or the car being
still or blocked for too long. Lexp imposes a prior pz to
the policy during the last Nz steps of an episode ending
with one of the events in Z . The indicator function serves
as a selection mechanism of the last steps in the episode.
This pz promotes exploration as follows: if z is a collision,
pz = B(1, 2.5) for the acceleration actuator, which encourages
slowing down behavior; if the car is still, the acceleration prior
is pz = B(2.5, 1), favoring increasing the vehicle’s speed; if
the vehicle deviates from the trajectory, a uniform prior B(1, 1)
is employed for the steering actuator [17].

Thus, uniting the Proximal Policy Optimization (PPO) loss
LP [36] that minimizes (2), the Behavior Cloning loss LBC

[23] and the entropy and exploration terms in (3), the total
loss function for policy learning of all GAIL-based agents in
this work is as follows:

αLBC + (1− α)LP + Lent + Lexp, (7)

where α controls the weight of the BC term LBC with respect
to the PPO loss LP during training.

V. EXPERIMENTAL RESULTS

The goal of the vehicle is to learn to navigate au-
tonomously in the city shown in Fig. 3 using the hGAIL
agent’s architecture with mid-level BEV input generation, and
subsequently generalize its driving skill to a new town.

A. Collected data

The environment and trajectories are obtained from the
CARLA Leaderboard evaluation platform 2. In particular,
the town01 environment from this platform along with ten
predefined trajectories are employed to generate the expert
training set.

The expert dataset is constructed using a deterministic agent
that navigates using a dense point trajectory and a classic

2CARLA Autonomous Driving Leaderboard available at:
https://leaderboard.carla.org/

Fig. 3. Town01 environment of the agent, with one of the routes used to
collect data by the expert. The highlighted path has 740 meters, 20 points in
the sparse trajectory (shown as yellow dots) and 762 points in the dense point
trajectory (not shown).

PID controller [37]. The dense point trajectory provides many
points at a fine resolution, whereas a sparse point trajectory
consists of considerably fewer points, providing only a general
sense of direction to the agent. As a result, the dense point
trajectory is utilized to generate training data by the expert,
whereas the sparse point trajectory is employed by the agent
for more general guidance.

In Fig. 3, one of the 10 routes executed by the expert to form
the labeled training set of demonstrations is shown, where
the line starting in yellow and ending in red represents the
desired trajectory (not observable to the agent as it is). The
sparse trajectory can be seen as yellow dots, generated every
50 meters traveled or when the vehicle is about to start a
different movement (from straight to turn and vice-versa).

The ten trajectories of the training set were recorded at a
rate of 10 hertz, resulting in 10 observation-action pairs per
second. For the shortest route of 1480 samples (average route
of 2129 samples), it represents 2.5 minutes (3.5 minutes) of
simulated driving. All the ten trajectories yielded a total of
21,287 training samples (30 GB of uncompressed data). The
total set corresponds approximately to 36 minutes or 8km of
driving.

B. Training

The training was conducted using six parallel actors in a
synchronous manner, with each actor running its own instance
of the CARLA simulator. In the simulation, each episode
begins with the vehicle at zero speed at a random starting
point. The episode concludes upon the occurrence of any
infraction, collision, or lane invasion, and a new episode begins
with the vehicle located at a random point of the map to
provide diversified experiences for each policy update.

At every 12, 288 environment interactions (steps), the
agent’s architecture is updated in a central computer: the
parametrized policy using loss function (7) is trained for 20
epochs using PPO (K=20), while the GAIL’s Discriminator
is trained for 2 epochs (J=2) on these 12, 288 samples; and
the CGAN’s Generator for BEV with the loss function (1) is
trained for 4 epochs, while its Discriminator for 4 epochs.
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This process corresponds to one training cycle of the full
hGAIL. A new cycle will collect the next 12, 288 samples
from all the actors, and execute the training as described
above again. As six parallel actors are used, 2,048 steps or
environment interactions per actor are recorded, totalling the
12,288 environment interactions. Thus, the episode does not
have to end for a policy update to happen. It is important
to note that at any given moment, any of the six actors
may be interacting with the environment in different parts of
the environment. Additional hyperparameters’s values can be
found in Appendix VI-D.

It is worth noting that the GAN’s generator of hGAIL is
pretrained on the fixed set of the ten expert trajectories (with
21,287 pairs of input and BEV targets) for 4 epochs in a
supervised way. After this pretraining, the batch of the real
BEV samples for training the GAN’s discriminator evolves
with the agent’s training and corresponds exactly to the batch
of 12, 288 samples collected by the six parallel actors. These
samples include the topdown view of the vehicle, computed by
the simulator, which becomes the real BEV images which the
GAN should learn to generate. This happens at every 12, 288
steps executed by all actors together and, thus, the training
of the GAN for generating a mid-level input representation
is accomplished as the agent interacts with the environment,
similarly to a strategy for decoupling representation learning
from reinforcement learning in [38]. The idea is that, once
the GAN’s training is turned off, the predicted BEV from
the GAN’s generator could be used in new city where
the real BEV is not available. The detailed algorithm for
hGAIL training is shown in algorithm (1). It is relevant
to notice that the training of the BEV representation will
benefit from the online training samples collected as the agent
interacts with the environment. In this setting, many examples
are generated where the agent deviates from the correct
trajectory, automatically enriching the training of the BEV
network.

C. Evaluation

The main evaluation environment is town2, shown in Ap-
pendix VI-F . It was used to test how well the hGAIL agent
can generalize its driving skills to unseen, new environments.
All experiments below consider agents trained exclusively in
town01 environment.

The training progress can be seen in Fig. 4 for hGAIL, GAIL
w/ real BEV, and GAIL from cameras agents. The second agent
is trained directly on the real Bird’s-Eye View image computed
from the simulator, while the last one is trained with input
coming directly from the three frontal cameras and sparse
trajectory, disregarding any Bird’s-Eye View representation.
The plot shows the average and standard deviation of the
number of infractions for three runs for each agent’s stochastic
policy.

The resulting deterministic policies of each agent trained
in town1 for all three runs are also evaluated in town2 as
training evolves, as shown in Fig. 5. It shows the average
percentage of completed routes from a total of six Leaderboard
routes in town2 as learning proceeds. Each run uses a different

Algorithm 1: Hierarchical Generative Adversarial Im-
itation Learning

Input: Expert transitions buffer BE , T , J , K, L ;
Input parameters: Actor θ, Critic ϕ, Discriminator ω ;
Pretrain CGAN BEV network G(.) w/ samples from BE ;
for episode = 1, 2, . . . do

for t = 1, 2, . . . , T do // Collect env. samples
// xt are CGAN G(.)’s inputs; yt is

the true BEV
Choose action at ∼ πθ (G (xt)); vt ← Vϕ (G (xt));
xt+1, yt+1 ← act(at);
Add (xt, yt, G (xt) , at, vt) to the buffer Bπ;

end
for j = 1, 2, . . . , J do // Update GAIL discrim.

Sample {(y(i), a(i))π}mi=1 and {(y(i), a(i))E}mi=1

from policy transitions buffer Bπ and expert
transitions BE , respectively;

Update the policy discriminator parameters w to
increase (2);

end
Compute advantage At∈{1,2,...,T} and add to policy

transitions buffer Bπ;
for k = 1, 2, . . . ,K do // Update agent w/ PPO

Sample
{(

G
(
x(i)

)
, a(i), A(i)

)π}m

i=1
from Bπ;

Update policy parameters θ to minimize (7);
end
Train CGAN BEV network w/ samples from Bπ for L

epochs (both generator G(.) and its discriminator);
end

agent trained exclusively in town1. Both hGAIL and GAIL
with real BEV are able to generalize the learning in town1
to town2. Besides, the ablation on hGAIL agent of the visual
input of the sparse trajectory negatively affect the evaluation
performance. In this context, it is worth noticing that if we
would have pretrained its GAN network for more epochs on
the expert dataset, we would improve the performance of the
hGAIL ablated (results not shown). This means that the sparse
trajectory given as extra visual stimuli makes the GAN train
faster.

In addition to the above three agents, other two agents
were tested: the Behavior Cloning (BC) and GAIL from
cameras agents. The BC agent consists of basically substituting
the GAIL policy for a BC policy, which receives the BEV
prediction from a GAN. Both BC and its associated GAN
were trained on the same set of ten demonstration trajectories
in an offline manner. Both of these agents are not shown
in the plot, since they fail to learn to complete any route
(staying at 0% if shown in Fig. 5). After training, the agent
was also evaluated at a given T intersection and compared
to the target given by the expert. Fig. 6 shows the resulting
trajectories, with blue and orange denoting the agent’s and
expert’s trajectories, respectively. It is worth noting that the
policy’s network in the hGAIL agent receives as input only
the generated (fake) BEV mid-level image, the current speed,
and last applied actions for throttle and steering. For instance,
this BEV image corresponds to the topdown image with three
channels from Fig. 1(c). It is important to observe that the
only information denoting the desired movement for the agent
comes from the yellow desired route in the drivable red area.
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(a) With visual trajectory input

(b) Without visual trajectory input

Fig. 4. Number of committed infractions vs. environment interactions during
training in town1 environment. The top (bottom) plot shows the results
for the agents receiving (disregarding) the sparse trajectory as visual input
(trajectory 1x192x192 in Fig.10) in the corresponding CNN. For each method
(hGAIL, GAIL with real Bird’s-Eye View, GAIL from cameras), the average
performance of three runs is depicted considering a stochastic policy. The
shaded area represents the standard deviation. The GAIL from cameras agent
fails to learn the task and keep the sum of committed infractions close to
zero, while the goal of zero infractions is achieved by both hGAIL and
GAIL with real BEV.

This yellow route occupies the whole lane in the BEV image,
which leaves open how the agent will learn to turn at certain
intersections. In other words, the agent’s policy can not see
directly the points in the sparse trajectory, as these points are
fed to the GAN part of the architecture and not to the policy.
This means that how we terminate the episode, such as through
infractions and lane invasion, will influence to a great extent
the type of behavior the agent learns. Such an example can be
seen in the turns of Fig. 6, where the agent’s trajectory does
not match exactly with the expert’s one. We conjecture that
the behavior of the agent could have been made more similar
to the expert if: the network of the agent’s policy would have
received all the information that the expert receives as input
(e.g., dense trajectory); the infractions would have been more
strict; additional reward terms would have been added in the
reward function to punish certain behaviors.

The agent trained only on town1 was also evaluated at every
T intersection in town2 environment, i.e., 8 different T inter-

(a) Evaluation

Fig. 5. Evaluation of agents in town2, trained exclusively in town1. The plot
shows the percentage of completed routes from a total of six Leaderboard
routes in town2 vs. environment interactions, averaged over three different
runs, where each run entails a different agent trained only in town1. For
each method (hGAIL, GAIL with real Bird’s-Eye View, hGAIL ablated), the
average performance of three runs is depicted considering a deterministic
policy. The shaded area represents the standard deviation. Not shown in the
plot, Behavior Cloning (BC) and GAIL from cameras agents fail to learn the
task and complete any route (staying at 0% if shown in the plot). Both hGAIL
and GAIL with real BEV agents are able to generalize the learning in town1
to town2. The latter agent does not have to learn BEV, as it has always access
to the true BEV. The hGAIL ablated agent receives no visual input of the
sparse trajectory, but only its numeric vector.

TABLE I
EVALUATION PERFORMANCE FOR 8 T INTERSECTIONS AND 6 TYPE OF

TURNS IN TOWN2

Turn type BC hGAIL GAIL from cam. hGAIL ablated
Top-right 0% 88% 0% 100%
Top-left 75% 100% 0% 75%
Right-left 50% 100% 25% 100%
Right-top 88% 100% 13% 63%
Left-right 88% 100% 13% 100%
Left-top 0% 100% 0% 88%
All types 50%(24) 98%(47) 8%(4) 88%(42)

sections, and compared to Behavior Cloning and GAIL from
cameras agents. The latter corresponds to a GAIL agent with
input directly from the vehicle’s three frontal cameras instead
of the mid-level BEV input. The results are summarized in
Table I, whose lines presents the results for each possible turn
out of 6 in total at a given T intersection (as shown in Fig. 6).
Thus, each turn,covering around 100 meters, was evaluated in
8 different T intersections, totalling 48 experiments for each
agent. The success percentage for each turn type is given in
this table, where we can see that hGAIL can turn without
failing in all intersections and for all turn types except for one
top-right intersection, while BC fails 50% of the times, and
GAIL from cameras fails to learn most of the required driving
behavior, succeeding only in 4 turns out of 48. This ablation
of the GAN from hGAIL (which is the GAIL from cameras)
shows the need for learning the mid-level input representation
to succeed in this complex task. Additionally, notice that only
hGAIL can finish complete trajectories (of around 1 km, as
shown in Fig. 5), as both BC and GAIL from cameras fail in
at least one turn type.
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(a) top-right (b) top-left (c) right-left (d) right-top

Fig. 6. Agent’s trajectories in town2 in blue color generated by the deterministic policy after training in town1 (at epoch 100) superimposed on the expert
trajectory in orange color. At the same T intersection, 6 possible movements are possible: from top to right, top to left, right to left, right to top, left to right
(ommited) and left to top (ommited).

(a) left (b) cent. (c) right (d) traj. (e) target (f) 1 cy. (g) 10 cy. (h) 20 cy. (i) 50 cy. (j) 90 cy.

Fig. 7. BEV generation in town2 as the agent goes through training in town1 . The first three columns shows the images from the cameras attached to
the front of the vehicle. The fourth column shows the sparse trajectory from the route planner. The fifth column shows five BEV images computed by
the simulator and are considered the target output. The following columns show the BEV images generated by the GAN from the agent’s architecture as it
undergoes training, at: 12,288 environment steps (1 cycle), 122,880 environment steps (10 cycles), 245,760 environment steps (20 cycles), 614,400 environment
steps (50 cycles), and 1,105,920 environment steps (90 cycles). One cycle is similar to the concept of epoch, and consists of the full training of hGAIL using
the last 12,288 steps collected; see Section V-B for more details.

D. Mid-level representation learning
Here, we present some results of the Bird’s-Eye-View

representation learned by the GAN’s generator of the hGAIL
agent’s architecture. While this GAN learns in town01, Fig. 7
shows the evolution of the representations of five different
vehicle’s positions taken in town02 at different training epochs
of the agent in town1, where each row corresponds to a
different particular position of the vehicle in the town02
environment. The first four columns are the input to the
GAN’s generator, consisting of the images from the three
frontal cameras and the sparse trajectory given as an image.
The fifth column corresponds to the targets (labels), i.e., the
BEV generated by the simulator, which is used to train the
GAN’s generator. The other columns show the mid-level BEV
representation evolving from a poor prediction at cycle 1 (after
12,288 environment steps) to a good enough prediction at
cycle 32. It is worth noticing that the GAN has never seen
town02, and was trained only on town01.

E. Dynamic environment
Here, we extend the hGAIL agent’s architecture to allow for

environments with traffic lights, pedestrians and other vehicles.

Initially, to make the agent able to learn to respect traffic lights,
it was necessary to employ importance weighting in the BC
term (LBC) of the loss function in (7) so that each sample in
the expert set is weighted according to its importance. These
weights were found by computing the inverse of the output of a
Kernel Density Estimator (KDE) applied on the target outputs
(action values), so that less frequent actions (e.g., accelerating
as the light turns green) are given more weight in the BC
loss. The KDE used a Gaussian Kernel with bandwidth equal
to 0.2. Additionally, three extra binary inputs were used for
the GAIL policy in hGAIL, denoting the detection of traffic
lights, pedestrians and vehicles in front of the cameras. Also,
the weight of the BC term in (7) was set to α = 0.012, and
the number of discriminator epochs (J) to 4.

The expert dataset was built similarly to the previous experi-
ment, with the same trajectories, as described in Section V-A,
except that now the expert respects traffic lights and breaks
when pedestrians and other vehicles appear close enough
ahead of its vehicle, which increases the dataset size. We
trained two agents from scratch for each method, i.e., hGAIL,
GAIL with real BEV, and GAIL from camera. The last two
methods also employed importance weighting and three extra
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Fig. 8. Number of infractions for hGAIL, GAIL from real BEV, and GAIL
from camera agents during training in town1 with pedestrians, vehicles and
traffic lights.

inputs as done in hGAIL, but processed inputs directly from
the real BEV of the scene for the second method, and from
the three frontal cameras for the last method. The training
evolution can be seen in Fig. 8, where the first two agents
converge to a low infraction rate in town01. The evaluation
results can be seen in Table V-E for both training town1 and
test town2 environments, showing the mean and the standard
deviations over all routes in each town and the two agents
trained for each method . Even though the GAIL agent has
a slightly better Route Completion, its Driving Score (22%)
is worse than the score (45%) of the hGAIL agent in town02
because the former commits more infractions and collisions.
It could be that the noisy predicted BEV that hGAIL uses as
input to the policy makes it more robust when learning to avoid
infractions in comparison to the GAIL with real BEV agent.
We can also notice that the expert fails sometimes. Particularly,
hGAIL surpass the expert for the Red Light Infraction in
town01, and it gets similar performance to the expert in other
metrics. The GAIL agent trained with input directly from
camera presented the worst performance, with 28% and 5%
average driving scores for town01 and town02, respectively.

In Fig. 9, we can observe that the hGAIL agent can
generate the three BEV channels for navigation in spite of the
pedestrians and vehicles that may pass in front of the cameras.
Thus, it learns to predict what is the road ahead in the BEV
representation as if the vehicle or pedestrian would not be in
front of the camera blocking the passage and the view.

VI. CONCLUSION

In this work, the hGAIL architecture was proposed to
solve the autonomous navigation of a vehicle in the CARLA
simulation environment in an end-to-end approach, connecting
sensory perceptions to low-level actions directly with neural
networks (sensory-motor coupling), while learning mid-level
input representations of the agent’s environment. hGAIL is
an hierarchical Adversarial Imitation Learning architecture
composed of two main modules: the CGAN which generates
the Bird’s-Eye View (BEV) representation from the three

Fig. 9. BEV generation in a scene with two cars captured by the vehicle’s
camera. Left: central camera image input to hGAIL. Right: predicted BEV
output by the CGAN in hGAIL.

frontal cameras of the vehicle, desired trajectory and high-
level command, which is a mid-level (more abstract) input
representation of the scene in front of the vehicle; and the
GAIL which learns to control the vehicle based mainly on the
BEV predictions from the CGAN as input.

Both GAIL and CGAN in hGAIL learns simultaneously
to control the agent and generate the input representations,
respectively. The learning takes place in an urban city initially
without pedestrians or other cars, but with dynamic routes that
can change the path on the fly. In the following experiment,
hGAIL is extended so that the agent can learn to respect traffic
lights and deal with the detection of pedestrians and vehicles.
Our experiments have shown that the mid-level input generated
by CGAN is essential for the learning task as the GAIL
exclusively from cameras (without BEV) fails to even learn
the task, keeping a high-infraction rate through training. The
BC agent with its associated GAN can complete some turns
in the trajectories, but not consistently as hGAIL can. In fact,
hGAIL, after training exclusively on ten expert trajectories
from one city, was able to generalize its navigation skills to a
new, unseen city, and complete 98% of all 48 possible turns
in the eight T intersections from that new city.

This work has demonstrated the usefulness of mid-level
BEV input for realistic navigation scenarios, but also that this
input representation can be learned concomitantly with the
agent’s policy training. Thus, the BEV generation is learned
with the same data distribution used to train the agent’s policy,
i.e., the expert dataset and the data generated by the agent. In
future work, we are interested in extending the method making
the policy generalize to other weather conditions and other
new cities; and sim2real experiments. Also, we would like
to investigate more closely the rarer situations that lead to
infractions, proposing a more refined architecture to handle
these difficult cases, as well as improve the quality of the
expert.

APPENDIX

A. Generative Adversarial Imitation Learning (GAIL)

In GAIL [14], basically, there are two components that
are trained iteratively in a min-max game: a discriminative
classifier D is trained to distinguish between samples gen-
erated by the learning policy π and samples generated by
the expert policy πE (i.e., the labelled training set); and the
learning policy π is optimized to imitate the expert policy πE .
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TABLE II
DRIVING PERFORMANCE AND INFRACTION ANALYSIS FOR DIFFERENT AGENTS ON TOWN01 AND TOWN02.

Agent Town Metrics
Driving Route Infraction Collisions Collisions Red Light Agent
Score Completion Penalty Vehicle Pedestrian Infraction Blocked
(%, ↑)a (%, ↑) (%, ↑) (#/Km, ↓) (#/Km, ↓) (#/Km, ↓) (#/Km, ↓)

Expert town01 86 ± 9 98 ± 2 87 ± 8 0.0 ± 0.0 0.0 ± 0.0 0.62 ± 0.43 0.21 ± 0.21
town02 46 ± 16 82 ± 1 60 ± 18 0.31 ± 0.14 0.0 ± 0.0 2.03 ± 1.32 1.17 ± 0.29

hGAIL town01 82 ± 1 95 ± 6 86 ± 4 0.14 ± 0.14 0.09 ± 0.09 0.48 ± 0.11 0.26 ± 0.26
town02 45 ± 2 66 ± 8 65 ± 3 0.98 ± 0.49 0.17 ± 0.17 2.24 ± 0.95 2.00 ± 0.51

GAIL town01 67 ± 1 97 ± 0 70 ± 1 0.76 ± 0.27 0.05 ± 0.05 0.53 ± 0.09 0.13 ± 0.0
town02 22 ± 2 72 ± 1 31 ± 5 3.93 ± 1.13 0.08 ± 0.08 2.24 ± 0.93 1.62 ± 0.13

GAIL town01 28 ± 1 50 ± 6 61 ± 10 0.36 ± 0.0 0.35 ± 0.35 2.63 ± 0.46 8.32 ± 4.02
from cam town02 5 ± 2 10 ± 3 48 ± 4 10.76 ± 6.80 0.62 ± 0.62 0.62 ± 0.62 18.00 ± 3.75

a The Driving Score, a metric from CARLA Leaderboard, is calculated by the product of Route Completion (the percentage of the route
distance completed) and an Infraction Penalty which accounts for all violations committed. For instance, if an agent ran a red light and
collided with a pedestrian during a route and the penalty for running one red light was 0.7 and for colliding with a pedestrian is 0.5,
the penalty would be 0.7× 0.5 = 0.35.

Thus, in this game, both D and π have opposite interests:
D feeds on state-action pair (s, a) and its output seeks to
detect whether (s, a) comes from learning policy π or expert
policy πE ; and π maps state s to a probability distribution over
actions a, learning this mapping by relying on D’s judgements
on state-action samples (i.e., D informs how close π is from
πE). Mathematically, GAIL finds a saddle point (π,D) of the
expression:

E
πE

[D(s, a)]− E
π
[D(s, a)]− λH(π)− λ2Lgp, (8)

where D : S × A → (0, 1), S is the state space, A is
the action space; πE is the expert policy; H(π) is a policy
regularizer controlled by λ >= 0 [31]. The discriminator
will try to increase (8), while π seeks to minimize it; and
Lgp is a loss that penalizes the gradient’s norm, constraining
the discriminator network to the 1-Lipschitz function space,
according to [32]. The above equation is the Wasserstein
loss, used to alleviate vanishing gradient and mode collapse
problems, using the Wasserstein distance [32] between the
policy distribution and expert distribution, as also done in [33],
[34]. It measures the minimum effort to move one distribution
to the place of the other, yielding a better feedback signal
than the Jensen-Shannon divergence. Both D and π can be
represented by deep neural networks. In practice, a training
iteration for D uses Adam gradient-based optimization [39] to
increase (8), and in the next iteration, π is trained with any on-
policy gradient method such as Proximal Policy Optimization
(PPO) [36] to decrease (8).

B. CGAN Network Architecture

Both CGAN networks’ architectures are presented in
Fig. 10, where the common layers in orange refer to layers
existing in both the Generator and the Discriminator. Notice
that they are separate networks which do not share parameters:
the figure was made to not repeat equivalent layers when
describing both networks.

Generator: It can be seen in this figure and also in Fig. 2
that the CGAN’s generator is a U-Net [40], usually employed
for image translation or segmentation. Further, while the image
is processed by convolution layers, the other perceptual inputs

(trajectory and command, second column in the figure) are
processed by two fully connected layers followed by two
transposed convolution layers which upsample their input to
reach the desired resolution so that it can be merged with the
last orange 256x10x10 layer in the left column. The next trans-
posed convolution grey layer (256x22x22) merges information
coming from the frontal cameras’s RGB images (left column)
and the trajectory points plus the command (right command)
for the generator network. Its final output is 3x192x192,
corresponding to the three-channels BEV translated image.

Discriminator: The discriminator is also conditioned on
the RGB images from the frontal cameras and the trajectory
visual representation, which are merged to the (fake/real) BEV
image, totalling 13x192x192 input to the first convolutional
layer of the discriminator. The other perceptual inputs (right
column) are processed similarly to the generator until it merges
in a new 384x11x11 layer (in blue) with information coming
from the images (256x10x10, left column). The final output
corresponds to the one given by PatchGAN.

C. GAIL policy architecture

The agent’s policy part, which corresponds to the right side
of Fig. 2, has the architecture shown in Fig. 11. The dis-
criminator layers are also shown, even though both network’s
weights are not shared, as in the previously presented CGAN
architecture. The only shared part corresponds to the layers
between the Generator and the value function Vϕ(.) until the
main branch splits into two heads: one for the actions steering
and throttle for the generator (with 2 softplus units that outputs
the α and β parameters of a Beta distribution, for each action);
and another for the value of state s, given by a linear unit. The
discriminator D(s, a) receives an action a in addition to the
observation s and maps to a linear output unit, whose output
value is employed as reward when training with PPO.

D. Hyperparameters

Tables III and Table IV show the hyperparameter values
for the GAIL and GAN parts of hGAIL, respectively .



12

Fig. 10. Conditional GAN architecture for generating the BEV input
representation. The Generator and the Discriminator are separate networks
which do not share parameters: the figure was made to not repeat equivalent
layers when describing both networks. The generator corresponds to the U-
net at the left side of Fig. 2 and aims at translating RGB 10x192x192 images
from the vehicle’s frontal cameras and sparse trajectory to BEV mid-level
input representation (3x192x192 images).

TABLE III
HYPERPARAMETERS FOR GAIL

Description Value
Parallel environments (N ) 6
Initial adam step size (lr) 2.0× 10−5

Adam step size exponential decay (λlr) 0.96
Number of PPO epochs (K) 20
Mini-batch size (m) 256
Discount (γ) 0.99
GAE parameter (λ) 0.9
Clipping parameter (ϵ) 0.2
Value Function clipping parameter (ϵvf ) 0.2
Value Function coefficient (c1) 0.5
Entropy coefficient (λent) 0.01
Exploration coefficient (λexp) 0.05
Timesteps per epoch (T) 12288
Weight of BC in GAIL loss (α) 0.004
Discriminator adam step size (lr) 2.5× 10−4

Number discriminator epochs (J) 2

E. Training progress

The evolution of training for the hGAIL agent in town1 can
also be seen in Fig. 12, where the whole trajectory throughout
the city is plot at three different moments in training. Early
in the training process, the infractions or errors, given by red
triangles, are frequent. These infractions decrease as learning
proceeds.

Fig. 11. GAIL architecture for policy learning, corresponding to the Generator
network at the right side of Fig. 2 and the Discriminator responsible for
producing the reward signal. The Generator, πθ(a|s), receives the predicted
BEV image from the GAN’s generator, the last agent’s actions (throttle, steer),
and the current speed as input (which forms the observation s of the policy),
and outputs the α and β parameters of the Beta distribution for both steering
and action with the SoftPlus activation function. The Value function Vϕ(s)
shares the Generator network’s layers until it branches into a separate head
with more two hidden layers and a linear output unit. The Discriminator
Dω(s, a) receives the actions throttle and steer in addition to the observation
s and has a linear output unit. Notice that features from the last convolutional
layer are flattened before they are merged (concat) with other information
into FC (fully connected) layers.

(a) (b) (c)

Fig. 12. The vehicle’s trajectory in town1, in blue, during different moments
of the training process. In the early training iterations, errors, marked in red
color, are common. As training proceeds, less and less mistakes happen: in
(a), until 86,000 environment interactions; in (b) from 61,000 to 147,000
interactions; in (c) from 245,000 to 331,000 interactions.
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TABLE IV
HYPERPARAMETERS FOR CGAN

Description Value
Adam step size (lr) 2.0× 10−4

Number of GAN epochs (L) 4
Mini-batch size (m) 32
Patch size (γ) (10, 10)
Resize (λ) (192, 192)
Lambda pixel (ϵ) 100

F. Evaluation environment

Town02 in Fig. 13 is the environment used for testing the
generalization capabilities of the trained agents.

Fig. 13. Town02 evaluation city , with one of the routes used to test agents
trained in town01. The highlighted path has 1010 meters, 29 points in the
sparse trajectory (shown as yellow dots) and 1030 points in the dense point
trajectory (not shown).
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