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Abstract—Convolutional neural networks (CNNs) for image
classification can be fragile to small perturbations in the images
they ought to classify. This fragility exposes CNNs to malicious
attacks, resulting in safety concerns in many application domains.
In this paper, we propose a simple yet efficient strategy for
decreasing the effectiveness of black-box attacks that need to
sequentially query the classifier network in order to build an
attack. The general idea consists of applying controlled random
disturbances (noise) at the softmax output layer of neural network
classifiers, changing the confidence scores according to a set of
design requirements. To evaluate this defense strategy, we employ
a CNN, trained on the MNIST data set, and attack it with a
black-box attack method from the literature called ZOO. The
results show that our defense strategy: a) decreases the attack
success rate of the adversarial examples; and b) forces the attack
algorithm to insert larger perturbations in the input images.

Index Terms—convolutional neural networks, adversarial at-
tacks, defense strategies.

I. INTRODUCTION

Despite achieving great performance in image classification
[1], state-of-the-art convolutional neural networks (CNNs) are
still vulnerable to small perturbations in the inputs they ought
to classify [3]. One example is that of a neural network that
mistakes a slightly perturbed image of a panda for a gibbon
[4].

To better study this vulnerability phenomenon, many re-
searchers have recently developed algorithms that generate
so-called adversarial examples. These are inputs purposefully
designed to induce a misclassification by the neural network
(though not by a human being).

One can divide the attack algorithms into two main cate-
gories according to the attacker’s knowledge about the network:
white-box and black-box methods. White-box procedures are
those that use at least one internal parameter of the neural
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network (e.g., its number of layers or values of its synaptic
weights) to generate their attacks [3]–[12]. Black-box algo-
rithms, on the other hand, need only the outputs of the neural
network for some set of input images [13]–[17]. Usually, the
latter makes use of the the confidence scores obtained from
consecutive queries to the network in order to compute a small
perturbation that is added to the input to make it adversarial.

To counteract such attacks, researchers have devised a wide
range of defense strategies in the last few years [3], [4], [7],
[12], [18]–[25]. Up to now, the attackers are winning this
digital arms race, since the CNN-based classifiers seem to
be inherently vulnerable to perturbed images that lie outside
their training set probability distributions. Even though one
can enlarge the training set with adversarial examples, as in
adversarial training [3], [4], [7], [12], [19] or ensemble methods
[20], it seems unfeasible to cover the training set with all
possible adversarial examples.

In Section III of this paper we present an alternative ap-
proach to defend CNNs against black-box attacks that need
to query the network under attack multiple times and have
direct access to its softmax output layer. This layer returns
the probability (or confidence score) associated with each
possible output class. The goal of our methods is to confuse the
attackers regarding the direction they should perturb the image
to make it adversarial. To achieve that, we apply controlled
random disturbances (noise) at the softmax output layer of the
CNN, in such a way that the output probabilities keep some
of their useful properties, such as score order and relative
in-between class score distance as described in the problem
formulation from Section II. To evaluate our defense strategies,
we employ a CNN trained on the MNIST data set and attack
it with a method called ZOO, the strongest black-box attack
method proposed so far in the literature [15].

Section IV shows and discusses our experimental re-
sults. Depending on the parameter configurations, our defense
method decreases the success rate of the adversarial images
from 99.8% to 65.3%. It also forces the attacker to increase



the magnitude of the perturbation added to the images.
Furthermore, the proposed method relies on the applica-

tion of a controlled random disturbance during the network
prediction step (after training), making it independent from
the probability distribution that generates the training set,
unlike previous work in training set augmentation or network
distillation [18], [20].

II. PROBLEM FORMULATION

Let N be any convolutional neural network for image
classification and A be a black-box adversarial attack. We shall
use S(N) to denote the set of adversarial images generated by
A for N , and F (x) ∈ Rm to represent the m-dimensional
output of the softmax layer of N when presented with an n-
dimensional image vector x ∈ [0, 1]n. This input x has to be
classified into one of m available classes. We assume that some
coding mechanism is available to convert matrices representing
images to column vectors.

Let us now call N ′ the network that is equal to N , except
for the output of its softmax layer, which is now given by
G(F (x)+d), where d ∈ Rm is a controlled disturbance vector,
and G : Rm → Rm is a normalization function, given by
Equation (1). G makes the outputs of the network N ′ sum up
to one, retaining the form of a probability distribution over the
classes i ∈ {0, . . . ,m− 1}.

G(F (x) + d)i =
(F (x) + d)i∑m−1
j=0 (F (x) + d)j

(1)

Our goal is to design such d in a way that:
1) the success rate of N ′ on the classification of S(N ′) is

higher than that of N for S(N); and
2) for any i, j ∈ {0, . . . ,m − 1}, if Fi(x) ≤ Fj(x), then

di +Fi(x) ≤ dj +Fj(x). That is, the disturbance vector
d does not affect the ordering of the values of F (x); and

3) for any i ∈ {0, . . . ,m−1}, the inequality |di| ≤ δ∗Fi(x)
holds, where δ is a design parameter satisfying 0 < δ <
1. In other words, it limits the designed disturbance to
be within the closed interval [−δ ∗ Fi(x), δ ∗ Fi(x)].

III. DEFENSE PROPOSALS

We describe in this section three different approaches to
design a disturbance vector d to be added to the output layer
of a neural network.

The only one that satisfies all the requirements (1), (2),
and (3) previously stated in the problem formulation is the
last method, termed Limited Disturbed Classes with Order
Preservation (Subsection III-C).

We present the other two, though, as a means to later
evaluate the performance of our ideas when we relax the
constraints on d posed by the problem formulation.

A. Homogeneously Disturbed Classes (HDC)

This first method generates a scalar disturbance d (or
noise) that is homogeneously applied to each F (x)i using the
same normal distribution N (0, σf ) with 0 mean and standard
deviation σf . The standard deviation σf , was defined to be
equal to ∆ ÷ r, where ∆ is equal to half of the difference

between the largest and the second largest value of the vector
F (x). We divided ∆ by r so that the random behavior of the
disturbance does not get affected by the saturation function,
defined further. For all the experiments presented in this paper,
we employed r = 3.

In Algorithm 1, which describes the HDC method, the
function sort(F (x)) returns a m-dimensional vector whose
values are sorted in descending order, i.e., the largest value
is the first element, represented by sort0(F (x)). Additionally,
satz(x) denotes the saturation function, which is equal to x,
if |x| ≤ z, and to z ∗ sign(x), otherwise.

Algorithm 1: Homogeneously Disturbed Classes
Input: F (x) ∈ Rm
σf ← (sort0(F (x))− sort1(F (x)))÷ (2 ∗ r);
for i ∈ {0, . . . ,m− 1} do

Select a random d from distribution N (0, σf );
F (x)i ← F (x)i + satσf∗3(d);

end
return G(F (x));

B. Disturbed Classes with Order Preservation (DCOP)

In this second approach, our goal is to change the HDC
method so that the requirement (2) of the problem formulation
is attained. To simplify the notation, and without loss of
generality, we assume that the vector F (x) given as input to
our algorithm is already sorted in descending order. Still, we
define the map diff : Rm × {0, . . . ,m− 1} → R to be

diff(v, i) =


vi − vi+1, i = 0

min{vi − vi+1, vi−1 − vi}, 1 ≤ i ≤ m− 2

vm−2 − vm−1, i = m− 1

This map computes the distance between some element i of
v and its nearest neighbor, where v is the output probabilities
of the classifier in descending order. That is, the diff map
computes the maximum allowable disturbance for each class.

The algorithm below shows that, now, the magnitude of each
di is delimited by diff(F (x), i), thus keeping the ordering of
F (x) intact.

Algorithm 2: Disturbed Classes with Order Preserva-
tion
Input: F (x) ∈ Rm
for i ∈ {0, . . . ,m− 1} do

σv,i ← diff(F (x), i)÷ (2 ∗ r);
Select a random di from distribution N (0, σv,i);
F (x)i ← F (x)i + satσv,i∗3(di);

end
return G(F (x));

Although this new version does satisfy requirement (2) of
the problem formulation, it does not attain specification (3).
So, in the next subsection, we deal with the last variant of our



disturbance approach, called Limited Disturbed Classes with
Order Preservation.

C. Limited Disturbed Classes with Order Preservation (LD-
COP)

In this approach, the standard deviation σv of N (0, σv,i) is
computed in the same way as in DCOP. However, δ ∗ |F (x)|
limits the magnitude of each di in this variant, as presented in
the pseudocode that follows We assume that F (x) is already
sorted in descending order.

Algorithm 3: Limited Disturbed Classed with Order
Preservation

Input: F (x) ∈ Rm and δ ∈ [0, 1] ;
for i ∈ {1, . . . ,m} do

σv,i ← diff(F (x), i)÷ (2 ∗ r) ;
Select a random di from distribution N (0, σv,i);
Fi(x)← Fi(x) + satδ∗Fi(x)(satσv,i∗3(di));

end
return G(F (x));

IV. RESULTS

First, we present in this section the three main elements used
to evaluate our proposal: the CNN, the attack algorithm ZOO,
and the experimental scenarios. Then, we show and discuss the
obtained results.

A. Convolution neural network (CNN)

We employ a CNN of 12 layers (described in Table I)
that makes use of convolution functions interleaved with batch
normalization and max pooling operations.

In Table I, conv(m,n)− c is used to refer to a convolutional
layer with kernel of size m×n and c channels. ReLU activation
function was applied for all the layers, except for the last one.

TABLE I
NEURAL NETWORK ARCHITECTURE

Layer Type Dimensions
0 Input (32x32x3)
1 Conv(3x3)-32 (32x32x32)
2 Conv(3x3)-32 (32x32x32)
3 Batch Normalization (32x32x32)
4 Max Pooling(2x2) (16x16x32)
5 Conv(3x3)-64 (16x16x64)
6 Conv(3x3)-64 (16x16x64)
7 Batch Normalization (16x16x64)
8 Max Pooling(2x2) (8x8x64)
9 Fully Connected (1024)

10 Batch Normalization (1024)
11 Fully Connected (1024)
12 Fully Connected (10)

The classifier model presented above (Table I), was trained
on the MNIST data set, which is a digit classification bench-
mark that contains images of single digits from 0 to 9 and the
corresponding labels (10 possible classes). There are 70, 000
images in this data set, which we divided into three different
disjoint subsets: training set, validation set, and test set.

The training set comprised 50, 000 images, whereas the
validation and test sets, 10, 000 samples each. ADAM [2] was
used as the optimization method to adjust the CNN parameters,
minimizing a categorical cross-entropy loss on the training set.
For such an optimization process we applied a learning rate of
5e−5, β1 = 0.9, β2 = 0.999 and ε = 1e−08.

The CNN was trained for approximately 50 epochs, resulting
in an accuracy of 99.59% and 97.71% on the training set and
test set, respectively.

B. Zero Order Optimization Method, ZOO

Given a neural network N and an input image x0 that
belongs to the class l0, the Zeroth Order Optimization Method
(ZOO) computes the adversarial x∗ associated to x0 by solving
the following optimization problem:

min
x
g(x) = min

x
(||x− x0||22 + c ∗ f(x)) (2)

s.t. x ∈ [0, 1]n

f(x) = max{log[Fl0(x)]−max
i 6=l0
{log[Fi(x)}],−κ}, (3)

where f(x) is a function that depends on the difference
between the two highest confidence scores in F (x), c and κ
are positive constants, and ||x−x0||22 is a normalization factor
used to obtain adversarial images x∗ as close as possible to
x0.

According to Equation (2), the adversarial x∗ is an image
similar to x0 that makes the neural network change its classifi-
cation output from l0 to another class. To solve the optimization
problem above, the ZOO attack approximates the gradient of
F (x) with respect to the coordinates xi by the quotient:

∂f(x)

∂xi
≈ f(x+ h ∗ ei)− f(x− h ∗ ei)

2 ∗ h
, (4)

where h is a small and fixed constant and ei is the standard
basis vector with the i-th component set to one and all other
components equal to zero.

Finally, the increment added at each iteration of the op-
timization algorithm to obtain the image xk+1

i from xki is
modulated by a factor η, e.g., if the Newton’s method is used
to solve Equation (2), then xk+1

i = xki +η ∗ ∂f∂xi

/
∂f2

∂x2
i

, instead

of simply xk+1
i = xki + ∂f

∂xi

/
∂f2

∂x2
i

. In this study, we employed
the ADAM optimizer [2] to solve the optimization problem
presented in Equation 2.

C. Experiments

Below we describe the test scenarios used to evaluate the
performance of our defense approaches:

1) Set the maximum number of iterations of the ZOO
algorithm to 10;

2) Set h = 0.0001 and the optimizer parameters β1 =
0.9, β2 = 0.99 and ε = 1e−8, as proposed by the authors
of the ZOO method [15];

3) Randomly select 500 images from the training set1;

1Preliminary experiments show equivalent results with images selected from
the test set.



TABLE II
DEFENSE METHODS FOR CNN CLASSIFIER

v Method
0 Original CNN
1 HDC
2 DCOP
3 LDCOP10
4 LDCOP20
5 LDCOP50

4) For each v ∈ {0, . . . , 5}, obtain the corresponding neural
network Nv according to Table II, where LDCOPX
denotes the LDCOP defense strategy with δ = X/100.;

5) For each η ∈ {0.01, 0.05, 0.1}, compute the set of
adversarial images Sη(Nv) using the ZOO algorithm;

6) Classify the sets of examples Sη(Nv) with the network
Nv .

D. Results

We evaluate our defense method along with two main
directions: the reduction in the success rate of the attack, and
the increment in the magnitude of the perturbation inserted by
the attacker.

1) Our defense decreases the success rate of the adversarial
attacks generated by ZOO: Figure 1 shows the success rate
of the adversarial images generated by ZOO for the original
network as well as for the networks that are enhanced with
our defense methods, i.e., with the disturbance d added to
F (x). We observe a significant improvement in the accuracy
of those networks with defenses on the classification of the
candidate adversarial images. Our method reduced the attack
success rate of ZOO from 99.8% to 65% in the most restricted
scenario (variant LDCOP10). The different performances of the
defense strategies are associated with the restrictions imposed
on the additive disturbance d: the more properties of F (x) the
disturbance d must preserve, the less effective is the defense.
In other words, as the LDCOP approach preserved properties
(1), (2), and (3) from problem formulation its performance
was expected to be lower or equal in comparison to the other
methods, while HDC preserves the property (1).

Fig. 1. Attack success rate for the ZOO algorithm against different variants
of CNNs, with and without defenses. The leftmost bar shows the result for
the original CNN without any defense.

2) Our defense forces the attackers to increase the pertur-
bation added to the images: Let I = {x0, x1, . . . , xi} be a
set of images xk ∈ Rn and S(Nv) = {xadv0 , xadv1 , . . . , xadvi }
be the corresponding set of adversarial images generated by
ZOO for the network Nv , v ∈ {0, . . . , 5}. Define αk to be
||xadvk −xk||2, i.e., the 2-norm of the perturbation added to xk
in order to generate an adversarial xadvk .

Figure 2 presents the distribution of the αk for all six
network variants. We can see that the defenses forced the attack
algorithm to increase the magnitude of the applied perturbation.
The higher the magnitude of αk, the less similar is xadvk to
xk, making xadvk a weaker and possibly a more questionable
adversarial image. Therefore, our method not only decreases
the success rate of the attacking images, but also forces the
attackers to generate adversaries of worse quality.

Figure 2 also shows the distribution of those αk associated
with the images xk that indeed fooled the classifier (black
bars). We observe that for smaller perturbations (αk ≤ 3),
the percentage of adversarial examples declined from 57.1%
for the original network to 7.0% for the network defended
with the LDCOP10 approach, corresponding to a reduction of
87.7% in that interval.

Fig. 2. Distribution of the magnitude of perturbations added by ZOO to
generate adversarial images from a given set of images. The x-axis is divided
into five intervals of perturbation magnitudes. The y-axis shows the relative
frequency associated with each of these intervals. For example, 57.1% of
the adversarial images generated for the original network have a perturbation
magnitude between 0 and 3, whereas only 0.6% of all images lie in this interval
for the network defended with HDC. The black bars correspond to effective
adversarial examples, whereas the blue ones represent the total candidates of
adversaries. The first interval is smaller than the others as the Euclidean norm
is greater or equal to 0.

Figure 3 depicts the quality degradation of the adversarial
images generated by the ZOO algorithm. For each column, it
displays the candidate adversarial image generated by ZOO
and the label predicted by the respective network. Note how
these images are visually more perturbed in columns 2, 3, and
4 (the ones where we employ our defenses) when compared to



column 1. This degradation is a consequence of the increased
perturbation forced by the defense methods.

Fig. 3. Examples of images generated by ZOO to attack different CNNs
trained on MNIST. Starting at the leftmost column, we have a sample of images
generated for the following networks: 0 (Original CNN), 1 (HDC), 2 (DCOP)
and 3 (LDCOP with δ = 0.1). The class with highest score according to the
corresponding classifier is shown above each image. Note how the quality of
the adversarial images worsen when a defense method is employed.

Figure 4 shows the gradient approximation computed using
the ZOO algorithm for each of the proposed defense meth-
ods. We can see that the gradients computed for Nv , with
v ∈ {1, 2, 3} (when the defense is active) have no spatial
regularities through the image pixels when compared with the
gradient computed for the neural network N0 (Orig.). This is a
result of the disturbance d applied to the output probabilities of
the neural network F (x), inducing uncertainty in the gradient
approximation at every iteration of the attack. The attacker is
left confused about which direction it should perturb the image:
the uncertainties perceived by the attacker are spatial (through
the image) and temporal (at each iteration).

V. CONCLUSIONS

In this work, we have proposed a new defense strategy
against black-box adversarial attacks. It consists of adding a
controlled random disturbance to the softmax layer of a neural
network classifier. This intervention acts exclusively during the
network prediction phase. We have designed three different
approaches to compute such disturbance. The difference among
them lies in the set of requirements the disturbance vector must
satisfy, such as preserving the ordering of the most probable
classes, and/or be proportional to the neurons’ outputs.

In order to evaluate our approach, we have trained a CNN
on the MNIST data set and attacked it with images generated
by the ZOO algorithm. Our findings show that the proposed
defense methods make the trained CNN less vulnerable to
adversarial images crafted by ZOO. The defenses considerably
reduce the success rate of the attacks, while still keeping the
usability of the network predictions, i.e., the general form

Fig. 4. Visualization of the approximate gradient (Equation 4), built by ZOO
at its first algorithm iteration for a particular image and different defense
strategies for the CNN. Each plot is formed by a matrix of arrows which
represent an approximation of the loss function gradient with respect to each
input pixel. The arrow length was fixed and its angle represents the gradient
value for the pixel position. The defense is active except for the top leftmost
plot.

of the probability distribution over classes. For instance, the
LDCOP10 method, which keeps the class ordering of the
softmax output and limits the noise magnitude, still attains
a significant reduction in the attack success rate generated by
ZOO from 99.8% to 65.3%.

Our defense methods also force the attacker to increase the
magnitude of the perturbation necessary to cause a misclas-
sification. Therefore, if the network misclassifies an image
generated by the attacker, it is probable that this image either:
cannot be classified as adversarial, due to its high perturbation;
or can be detected by other defense methods [21]–[25].

This combination of methods, left as future work, would
result in a much stronger defense since they are orthogonal:
while most methods depend on augmenting the training data set
or retraining the network, ours act exclusively on the network
prediction and does not explicitly depend on a particular data
set.

Additionally, we plan to investigate the performance of our
defenses in different settings, such as: a) against other black-
box attack algorithms that depends on the output of the softmax
layer; b) when the classifier is trained on different data sets
(e.g.: CIFAR-10, CIFAR-100); c) when different probability
distributions (such as the uniform distribution) are employed
to compute the required controlled disturbance.

Finally, because of its simplicity and ease of application,
we advocate the usage of the proposed strategy as a standard
method to evaluate the robustness of new black-box attack
methods.
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