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Abstract. Specific cones are used to delimit the tracks for the race cars in the Formula Student Driverless competition. To
effectively race autonomously, the car must accurately detect them. In this context, this work investigates state-of-the-art
Convolutional Neural Networks, specifically the so called You Only Look Once (YOLO) net, for robust and fast detection
of cones from images of a camera mounted on the race car. To train YOLO, the Formula Student Objects in Context
(FSOCO) dataset with four different classes of cones in the track is employed. The mean Average Precision (mAP) and
network inference time are used to evaluate: (1) the influence of the image resolution; (2) the impact under different image
perturbations such as brightness, exposure, blur, and noise; (3) the benefit of extra data augmentation for improving
robustness to the aforementioned perturbations and out-of-distribution disturbances. We have found that: YOLO is a
strong candidate for real-time cone detection for race cars; mAP increases with the image resolution, with just a slight
increase in the network inference time; extra data augmentation for network training is beneficial for recovering the lost
mAP when perturbations (of brightness, blur and noise) and especially out-of-distribution disturbances are applied to the
images.
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1. INTRODUCTION

One of the reasons for promoting autonomous race car competitions is that it provides an opportunity for developing
and testing high-performance autonomous vehicles while advancing the state-of-the-art in the field. Formula Student
Driverless is one of such competitions, held by Formula SAE1 and that requires the development of a fully autonomous
race car, where both speed and precision are important for successfully maneuvering it throughout the track, avoiding
collisions which incur penalties and with the final goal of winning the competition.

To develop an autonomous vehicle, it is necessary to integrate different modalities of perceptions, such as cameras
and other sensors, to a motion estimation and mapping pipeline and finally to an effective control system (Dhall et al.,
2019). For the competition, the autonomous race car needs to able to correctly perceive its surroundings, for instance,
assigning meanings to each of the identified objects in an image acquired from its camera. As the environment is a race
track delimited by different traffic cones of distinct size and color, the race car needs to accurately detect cones from
camera images, as well as their associated color, such as blue, yellow and orange with as little latency as possible and with
minimum utilization of computational resources (Kabzan et al., 2019). After that, one needs to estimate the 3D position
of cones from images to infer their distances from the vehicle (Dhall et al., 2019).

Object detection through Convolutional Neural Networks (CNNs) is the most promising approach since the AlexNet’s
CNN won the ImageNet visual recognition challenge in 2012 (Russakovsky et al., 2015). This is because of its inherent
visual processing capabilities given by its adaptive convolution layers, which are basically filters that can be trained
through labeled data. In this sense, CNNs are trained to extract the most relevant features for a certain visual task,
conditioned on the available labeled images. CNN architectures such as YOLO (Bochkovskiy et al., 2020) and Faster
Region Based Convolutional Neural Networks (R-CNN) (Ren et al., 2015) are the most promising approaches for real-
time object detection. Considering that speed is a crucial requirement for race cars, in this work, we focus on YOLO-based
object detection because of its superiority in terms of inference time.

Successfully deploying supervised learning models, such as CNNs, depends on many factors, one of which is the
amount of available high-quality labeled data. In our context of race car competitions, two datasets are mostly used for
cone detection: MIT dataset (Strobel et al., 2020) and FSOCO dataset, (Dodel et al., 2020). The latter is the most recent
dataset and also more relevant to the race car environment as it contains cone images taken from realistic race cars on
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various real race tracks, unlike the former which contains any type of traffic cone (e.g., from an urban street) and does not
specify the classes of cones that are specific to the competition.

Although most of the previous work on autonomous driving presents results that integrate perception to motion esti-
mation and control (Caporale et al., 2019; Kabzan et al., 2019; Tian et al., 2018; Chen et al., 2019), as far as the authors
know, none of them have done a detailed study on cone detection using two of the latest versions of YOLO and the newly
introduced FSOCO dataset. In this work, we aim to show a more in-depth investigation of different versions of YOLO for
cone detection, taking into account detection accuracy and inference time. We show that a simpler architecture of YOLO
with higher image resolution is faster while still maintaining most of the accuracy of the full architecture. Besides, our
results show that investing in data augmentation is much needed for detection robustness, especially in out-of-distribution
image disturbances.

1.1 Related Work

Perception for Formula Student Driverless race cars. In de la Iglesia Valls et al. (2018), the first autonomous
race car to win the competition is presented. They describe not only the perception system, but also the state estimation
method and other system integration issues. Cone detection is achieved using mainly 3D Light Detection And Ranging
(LiDAR) sensors, while no details have been given concerning a camera-based solution. Dhall et al. (2019) presents a
cone detection system for monocular cameras using their own manually annotated dataset of cone images. They employ
version 2 of YOLO(v2) for detecting cones from single images, and also present methods for recovering their 3D position,
but do not investigate in-depth cone detection. (Strobel et al., 2020) also describes a complete visual perception system
for a race car with podium finishes at all competitions for which it raced. For cone detection, they employ YOLOv3 and
also provide a publicly available dataset of traffic cones. The newest and most high-quality dataset for cone detection
for the competition, FSOCO, is presented in (Dodel et al., 2020), which also shows some preliminary results on cone
detection using YOLOv4.

Evaluating robustness to environmental changes in autonomous driving. Some studies investigate robustness of
CNNs to common corruptions. Shafiee et al. (2021) indicates that generating different test cases that leverages real-world
changes in driving conditions like rain, fog, snow, and lighting conditions are important in the evaluation of autonomous
driving systems. Michaelis et al. (2019) considers three different datasets with a large variety of image corruptions and
shows that network performance decreases by 30% to 60%, and it also applies an augmentation technique to increase ro-
bustness. Dodge and Karam (2016) evaluates five types of quality distortions: blur, noise, contrast, JPEG, and JPEG2000
compression, and shows that state-of-art networks are susceptible to these quality distortions, especially to blur and noise.

1.2 Contribution

This work investigates cone detection approaches for the perception module of race cars, taking into account inference
time, accuracy and robustness to perturbations, and has the following contributions: (1) it provides results on different
versions of the YOLO architecture for detection of coloured traffic cones belonging to four possible classes, using the
newly introduced FSOCO dataset; (2) It shows the influence of the image resolution for achieving a trade-off between
accuracy and inference speed; (3) It presents the impact under different image perturbations such as brightness, exposure,
blur, and noise; (4) It reveals the benefit of extra data augmentation for improving robustness to the aforementioned
perturbations and out-of-distribution disturbances.

2. METHODS

2.1 Convolutional Neural Networks (CNN)

CNNs are neural networks that use convolution in place of general matrix multiplication in at least one of their layers
(Goodfellow et al., 2016). A convolution operation on a digital image (Fig. 1 - right) basically consists of sliding a
kernel (weight matrix) throughout the image (input) while performing a dot-product operation between the kernel and the
corresponding pixels in the image in order to generate convolved features in an output layer (Aggarwal, 2018; Goodfellow
et al., 2016). For each layer in the CNN, this procedure is done considering different kernels, which results in multiple
output activation tensors called feature maps. They represent the result of different filters applied on the input image that
learn to detect specific visual patterns after training the whole network. The number of feature maps (or applied filters)
is represented by the depth of a layer which usually grows as one deepens through the network layers (Fig. 1 - left). The
deepest convolutional layers can represent more abstract concepts from the image.

After the convolution, an activation function, usually the Rectified Linear Unit (ReLU), is applied to generate the
final value of feature maps. In addition, CNNs can have pooling layers that are interleaved with the convolution layers
(Aggarwal, 2018). The pooling operation produces another layer with the same depth (i.e., same number of feature maps
in the respective layer) and it is used to reduce the spatial dimensions of each feature map. Unlike convolution, each
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Figure 1: Left: A typical architecture of a CNN with convolution layers, pooling layers and fully connected layers:
VGGNet from Simonyan and Zisserman (2015). Right: A 2D convolution between a 3 × 3 input and a 2 × 2 kernel,
resulting in a 2× 2 feature map.

feature map is independently processed and therefore the number of output feature maps is exactly equal to the number of
input feature maps when pooling is applied (Aggarwal, 2018). Usually, max pooling is the chosen operation, which takes
the maximum value of a square region in the image as output. Pooling yields robustness to small variations in the pixels
of the input image. The last convolutional/pooling layer in a CNN connects to one or more fully connected layers, which
receive the high-level features extracted from visual images, projecting them into an output space that is dependent on
the desired task, e.g., regression or classification. The training procedure of the whole network is done through stochastic
gradient descent in an iterative way (Goodfellow et al., 2016).

2.2 Object Detection

A fundamental challenge in computer vision is the ability to classify objects in images and determine their spatial
location. There are different approaches to object recognition (Liu et al., 2019), such as: (1) classification or categorization
aims to identify what type of objects are presented in an image, without necessarily localizing them; (2) object detection
consists of finding (predicting) the bounding boxes of objects in a image together with their respective classes; and (3)
semantic segmentation corresponds to assigning a class to every pixel in an image. Other types of segmentation include:
instance segmentation (Liu et al., 2019), panoptic segmentation and dense pose prediction (Wu et al., 2019).

Finding models that are highly accurate and also fast in their inference is not trivial (Liu et al., 2019). Usually, one
needs to make a trade-off between these two metrics according to the application. For instance, in the two-stage approach,
implemented by Faster R-CNN (Ren et al., 2015), which is highly accurate, is based on a sequential procedure of first
removing the background and only then classifying the remaining regions (Liu et al., 2019). On the other hand, the one-
stage approach, e.g. the Single Shot Detection (SSD), is known for higher efficiency (Bochkovskiy et al., 2020) and is
able to infer both the objects’ classes and the bounding boxes simultaneously in one shot.

In this work, the goal is to spatially detect and classify cones from track images, in 4 possible classes: yellow, blue,
small orange and large orange. Although accuracy is very important, efficiency was prioritized as the detector should work
in a real-time situation, with the onboard hardware limitations. Thus, this work focuses on YOLO-based architectures
(Redmon, 2016), known for their efficiency in generic object detection based on CNNs, described in Section 2.4.

2.3 Performance Metrics

The Intersection over Union (IoU) is a similarity measure used to evaluate how well the predicted bounding box
overlaps with the target bounding box in object detection (Fig. 2). From this IoU, one can compute the true positives
(tp) (no. of objects with IoU ≥ γ), false positives (fp) (no. of objects with IoU < γ), and false negatives (fn) (no. of
undetected objects) and, thus, subsequently the resulting precision (tp/(tp + fp)) and recall (tp/(tp + fn)) can also
be computed. Here, γ represents a threshold for IoU at which objects are considered either a tp or fp. For some fixed
threshold γ, precision measures the fraction of predicted bounding boxes that are actual objects, whereas recall gives the
rate of objects that were actually detected (Rezatofighi et al., 2019).

To evaluate the object detectors, the Average Precision (AP) metric is used, defined as the area under the precision-
recall curve. It can be computed by averaging precision at eleven discrete recall values from 0.0 to 1.1 with a step size of
0.1 . In the case of object detection and in this work, the precision is averaged for γ from 0.5 to 0.95 with a step size of
0.05 instead. For multiple classes of objects, the mean Average Precision (mAP) is computed which takes the mean of the
AP for all classes.
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Figure 2: Left: Intersection over Union (IoU) metric for a bounding box class prediction. Right: a typical image from the
race track delimited by cones with their associated bounding boxes.

2.4 YOLO

You Only Look Once, or YOLO, is an object detection method (Redmon, 2016) based on CNNs that combines clas-
sification and spatial localization in a single pass through the image, making YOLO an exceptionally fast and accurate
method. This is achieved by stating the learning problem as a regression problem for finding both the bounding boxes
and classes probabilities simultaneously. This means that, differently from other approaches such as sliding window algo-
rithms (Goodfellow et al., 2016) and region proposal-based (Ren et al., 2015), YOLO processes the whole image in one
go, which allows it to implicitly codify contextual spatial information about objects and their classes.

Originally, YOLO (version 1) uses a CNN with 24 layers, where the first 20 convolutional layers from Figure 3 are
pretrained on the ImageNet dataset, and are followed by an average-pooling layer and a fully connected layer. The final
layer predicts both class probabilities and bounding box coordinates. The width and height of the bounding box are
normalized by the image width and height so that its value falls between 0 and 1. The bounding box center x and y
coordinates are parametrized to be offsets of a particular grid cell location so they are also bounded between 0 and 1. The
activation function for the final layer is the leaky rectified linear activation.

The loss function for training YOLO (Redmon, 2016) is formed by sum-squared errors of the predicted values of the
bounding boxes as well as of the class probabilities. To reflect that small deviations in large boxes matter less than in small
boxes, the model predict the square root of the bounding box width and height instead of the width and height directly
(Redmon, 2016).

Figure 3: YOLO architecture.

After the first publication of the YOLO network, other versions were released with optimizations that improved per-
formance, and where the whole architecture is composed of three high-level modules, namely, backbone, neck and head,
where each one includes many convolution layers. YOLOv3 (Redmon and Farhadi, 2018) had changed the loss function
to cross entropy, the backbone changed from Darknet-19 to Darknet-53 (Redmon, 2013–2016), predictions were made in
three different scales and residual blocks were added to the network.

YOLOv4 (Bochkovskiy et al., 2020) uses CSPDarknet53 (Wang et al., 2019) for the backbone, Spatial Pyramid Pool-
ing (He et al., 2014) and Path Aggregation Network (Liu et al., 2018) for the neck, and YOLOv3 (Redmon and Farhadi,
2018) for the head. Besides that, the network combines a series of optimizations to improve performance: Weighted-
Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-
adversarial-training (SAT) and Mish-activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU
loss. Therefore, this model presents an Average Precision (AP) significantly higher than its previous versions.
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2.5 Dataset for Cone detection

In this work, we use the FSOCO (Formula Student Objects in Context) dataset (Dodel et al., 2020), which segregates
cone classes such as blue cone, yellow cone, small orange cone and big orange cone. While it is not an open source
dataset, to have access to the dataset, it is necessary to contribute with labeled data. The contribution was made as part of
this work and it gives a lifelong access for Ampera Racing Team, allowing the development of future works.

The dataset FSOCO is constantly updated as more teams contribute with labeled images. When this work was devel-
oped, it was used approximately 2000 images. For every image in the dataset, there is an associated file that contains the
information on the localization of the cones and their corresponding classes. When extra data augmentation was used, the
resulting dataset increased 5x in size.

As classes in the dataset are not well balanced, there are many more examples for yellow and blue cones than for
orange and big orange cones (Figure 4). To train and test networks, the dataset was divided as follows: 70% for training,
10% for validation, and 20% for testing.
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Figure 4: Distribution of cone classes for the training and test sets, for the FSOCO dataset, where 0,1,2 and 3 represent
blue, yellow, small orange and big orange cones, respectively.

3. EXPERIMENTAL RESULTS

3.1 Experimental Setup

For all experiments in this work, the following configuration is used, unless otherwise stated:

• Hardware specification: CPU Intel(R) Xeon(R) CPU @ 2.00GHz, GPU Tesla P100-PCIE-16GB, 68GB Disk,
12.7 GB RAM and CUDA Version 10.2.

• With YOLO, transfer learning is employed by initialization of network weights that were pretrained on the MS
COCO dataset, before final training with the dataset of traffic cones.

• Training parameters: batch size = 64, subdivisions = 16 and decay = 0.0005. For YOLOv3: learning rate = 0.001,
max batches = 10000. YOLOv4: learning rate = 0.0013, max batches = 10000. YOLOv4 Tiny: learning rate =
0.00261, max batches = 6000.

• The architecture of the CNNs are the default ones from the respective versions of YOLO (version 3 or 4). They
can be visualized here: github.com/laizaparizotto/Cone-Detection-for-Formula-Student.

3.2 Overall Comparison Between Networks

Formula Student competition has a standard track whose boundaries are defined by yellow cones located at the right
side of the track and blue cones positioned at the left side. Besides, big orange cones mark the beginning and the end
of laps. Therefore, not only the format and color of the cone but also the relative size must be taken into account when
performing cone detection. To differentiate well among the 4 possible classes of cones is important so that the racing car
has the best conditions to win the race, i.e., is able to perceive the track well in advance as well as to understand when a
lap finishes. Results for testing are presented in Table 1, where no frames from the test set are used in training. YOLOv4
has a slightly higher mAP than YOLOv3. While YOLOv3 presented better inference time for cone detection in a whole
image of 416x416 (26.8 milliseconds), YOLOv4 performed this operation in 33.2 milliseconds. On the other hand, the
tiny version of YOLOv4 drastically reduced the inference time to an average of 5.2 milliseconds at the cost of reducing
the detection precision (mAP).
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Table 1: Test performance of networks with image input size of 416x416 for FSOCO dataset for IoU threshold of 50%.
YOLOv3 YOLOv4 YOLOv4 Tiny

Average Inference time (ms) 26.8 33.2 5.2
Mean Average Precision (mAP %) 69.2 76.3 56.8
Blue cone (AP %) 72 79.3 59.5
Yellow cone (AP %) 65.1 72.9 53.1
Orange cone (AP %) 53.4 63.3 38.6
Big orange cone (AP %) 86.5 89.8 78.8

To win the Formula Student Driverless competition, the racing cars should drive as fast as possible, with a minimum
number of mistakes. Final score is based on the time the car took to finish the competition and on infringed penalties, such
as knocking cones or getting out of track’s boundaries. In this context, one of the most important factors to consider, after
being able to detect cones consistently, is the frequency at which the system can run. Thus, reducing the time required for
detecting images is crucial to leave enough computation time for the other modules in the pipeline of a racing car, such as
control (Kabzan et al., 2019).

From Table 1, one could ask: is it better to use the normal version of YOLOv4 (second column) with higher accuracy,
or the Tiny version (third column), with higher speed but less accuracy. To better address this question, in the following
section we explore how YOLOv4 Tiny can have its accuracy improved while still operating fast.

3.3 Higher image resolution improves accuracy for YOLOv4 Tiny

As YOLOv4 Tiny operates with a very fast inference time, it is worthy to investigate ways to improve its accuracy
while maintaining inference time still low. To achieve that, we train and evaluate networks with higher resolution images,
that can provide more detailed information about the objects in the scene. We expect that this change can increase the
cone detection accuracy for YOLOv4 Tiny.

Figure 6 presents results with other two higher image resolutions, 512×512 and 608×608, in addition to the standard
416×416. Note that the YOLOv4 Tiny net was trained from scratch for each new chosen resolution. The figure shows the
Mean Average precision and inference speed for each configuration. It is impressive that YOLOv4 tiny (608x608) gets as
good accuracy as YOLOv3 (416x416), but at a fraction of the inference time.
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Figure 5: mAP and inference time for the FSOCO dataset.

These results show that by increasing the image input size (resolution), it is possible to improve the accuracy of the
network while still maintaining a fast cone detection time: the mAP has raised significantly from 56.8% to 70.8% when
switching from 416x416 to 608x608 image resolution (a 24.6% increase in accuracy), whereas the inference time went
from 5.2 milliseconds to 8.0 milliseconds, which is still only 29% of the YOLOv3 inference time (26.8 ms).

In Figure 6, the Average Precision was plotted for each individual cone type. It is possible to see that for large orange
cones the network presents a higher precision than for other cone types, even with less training examples belonging to
that class. This is due to the size that these cones occupy in the scene in relation to the total image size. Their bigger size
offers much more information for a reliable detection much in the same way increasing a image resolution provides better
accuracy as already observed.

3.4 Error visualization throughout a test image

To understand how the networks considered in this work perform on an usual scene of a racing track with multiple
cones in different positions and distances, we propose to color-code the IoU metric for each cone in the image. This can
be seen in Figure 7, where a characteristic picture from the test dataset was analyzed. The metric intersection over union
(IoU) between the ground true bounding boxes and the network predictions is color-coded in different shades of green. A
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Figure 6: mAP for each class in the FSOCO dataset.

IoU closer to 1 means perfect matching with the true bounding box of the respective cone, and is coded as bright green
(rectangle), whereas lower values are coded with darker green. Cones that are not detected appear as dark red rectangles.

It can be seen that YOLOv4 has the most accurate predictions as it has the highest IoU in the predicted bounding
boxes. For this image, the standard YOLO has more bright greenish rectangles than the tiny version, especially for closer
(bigger) cones, representing a better adjustment of the predicted bounding boxes to the ground truth. Besides, YOLOv4
Tiny gets more accurate as its image input size (resolution) increases. With the 416×416 configuration, the network made
wrong predictions for several cones, while the 608×608 configuration only predicted one wrong example. In general, we
observe that most of the undetected cones are very small in size, independent of the configuration used, and they do not
repeat for each different network.

Figure 7: Error visualization. The color gradient is related to the IoU between the ground truth label and the predicted
bounding boxes. Dark red rectangles are related to cones that were not predicted by the network.

3.5 Performance under Special Image Conditions

The real-world environment of an autonomous car can be very variable and not always able to provide perfect image
conditions. The special image conditions (or perturbations) could be caused by different weather conditions, darkness,
occlusion, etc. In this section, the performance of three networks are analyzed – YOLOv4 (416×416) , YOLOv4 Tiny
(608×608) and YOLOv4 Tiny (608×608) with extra data augmentation – under 4 different conditions: brightness, expo-
sure, blur and noise. Besides, images with manual perturbation, such as the presence of other objects and occlusion, are
considered.

Data Augmentation is a regularization technique used to avoid overfitting when training machine learning models.
YoloV4 Tiny (608×608) with extra data augmentation was trained with all images of the FSOCO dataset plus new
perturbed images considering all of the following four effects – brightness, exposure, blur and noise – on all images.
This means that the dataset was 5 times bigger than the original version It is important to consider that the YOLOv4
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architecture already internally includes several augmentation techniques. Even though, we performed this additional data
augmentation on top of the already existing one in YOLOv4 in order to compare results with a standard YOLOv4 Tiny
without this extra augmentation.

3.5.1 Brightness, Exposure, Blur and Noise

The first perturbation considered was brightness/darkness, where the parameters vary from +65% (brightness) to -65%
(darkness). The second one considers a variation in the exposure condition, from -40% to +40%. The third transformation
applies a Gaussian Blur perturbation on images. The visual effect of this blurring technique is a smooth blur resembling
that of viewing the image through a translucent screen. In physical situations, blur could appear on images when there is a
moving camera detecting stationary objects, or it could even simulate a raindrop in the camera. Finally, a salt-and-pepper
noise – randomly change some pixels to white or black – was applied. Noise means altering pixels to be totally different
from the context of the neighboring pixels, erasing any prior information. In contrast to the humans’ perception system,
where noise can be easily ignored, machine learning algorithms usually have a hard time classifying images with noise.
Noise can simulate a situation where the camera connection is not stable or even a situation where there is dirt in the
camera.

Table 2: Test performance of networks on different image conditions for the FSOCO dataset. Percentages in parenthesis
give the relative change of the third column (with extra augmentation) with respect to the second column (without) for
IoU threshold of 50%.

YOLOv4 (416×416) YOLOv4 Tiny (608×608) YOLOv4 Tiny w/ aug (608×608)
No perturbation 76.3 70.8 -
Brightness (mAP %) 67.7 61.4 63.7 (+3.7%)
Exposure (mAP %) 75.4 68.9 67.2 (-2.4%)
Blur(mAP %) 69.8 65.0 68.0 (+4.6%)
Noise (mAP %) 67.2 52.3 67.0 (+28.8%)

Table 2 shows the mAP on test images that underwent the application of the respective perturbation or special image
condition. Note that YOLOv4 with augmentation was trained including additional perturbed images with all four effects
in the training set. The application of any of the effects diminishes the performance of all networks in relation to No
perturbation (bold line in the table). In general, the non-tiny version of YOLOv4 had a more robust cone detection under
image perturbations. On the other hand, the extra data augmentation of the tiny YOLO (third column) served well the
purpose of improving detection performance under these conditions. Furthermore, it can be seen that the networks are
considerably affected by brightness changes. YOLOv4 Tiny with augmentation presented a slight improvement in its
mAP (63.7%) when compared to the traditional YOLOv4 Tiny (61.4%).

With respect to exposure, the networks did not show a substantial decrease in performance. One possible explanation
is that the perturbation (+-40%) was not as high as it was for brightness (+-65%). The decision of only applying +-40%
was based on the visual change of the images, such that a human is still able to discriminate the cone’s positions and their
classes. The only case where data augmentation did not improve the performance was for the exposure effect, which by
itself did not affect strongly any of the networks.

The test results for the blur condition are similar to ones for brightness, with a decrease in performance under the
special condition and with augmentation recovering partially the lost performance of the tiny YOLO. Finally, for noise
perturbation, the extra augmentation process played an important role in improving the YOLOv4 Tiny performance, since
the mAP went from 52.3% to 67%, a 28.8% increase.

3.5.2 Out-of-distribution perturbations: different object classes and occlusion

The goal here is to view how the networks perform under non-common situations that can be considered out-of-
distribution cases not ever seen in the training set, such as unusual objects in the track, occlusion and other situations that
could confuse the detection. This stress testing is an important task because the perception pipeline, which includes cone
detection, plays a crucial role in the vehicle’s decision-making.

The first perturbations correspond to including animals in the track, more specifically cats and birds. Some of the cats
were cropped in a cone shape in order to challenge the cone detection capability. The second perturbation corresponds to
the occlusion of random parts of an image through the drawing of black holes (circles). Figure 8 shows the predictions for
these images for the following networks, respectively: YOLOv4 (416 × 416), YOLOv4 Tiny (608 × 608) and YOLOv4
Tiny with Augmentation (608 × 608).

It can be seen that YOLOv4 (416 × 416) is not able to differentiate objects that are very different from cones but
slightly resembles the cone shape and size. It detects two birds as a blue cone and two cropped cats as orange cones. On
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the other hand, it performs well in the occluded images, being able to correctly detect all of the occluded cones.
The birds were not wrongfully detected as cones by YOLOv4 Tiny (608 × 608), but the cat in the right image was still

detected as an orange cone. Besides, both the tiny YOLO networks with higher resolution seem to suffer from occluded
images, since they were not able to detect the two yellow cones in the left image and one yellow cone (almost completely
covered) in the right image.

Finally, YOLOv4 Tiny with extra Augmentation (608 × 608) deals better with the unusual animals in the track, being
able to ignore all of them. As for the occlusions, it had a better confidence score in the blue cone in the middle of the left
image, although it was not able to detect the two yellow cones nor the occluded yellow cone in the right image.

We can conclude that augmenting the original dataset with images under the four aforementioned special conditions
yields a more robust cone detection method that can ignore out-of-distribution objects that resemble cones in shape. Note
that the network was not trained explicitly to ignore these unusual objects and, thus, this capability was obtained indirectly
from the augmentation with other types of image perturbations.

Figure 8: YOLOv4 (416x416),YOLOv4 Tiny (608x608) and YOLOv4 Tiny with Augmentation (608x608) detections
under out-of-distribution perturbations.

4. CONCLUSION

This work has presented an investigation of the application of different YOLO-based convolutional neural networks
for cone detection in images of race tracks from the Formula Student Driverless competition. Experimental results have
shown that it is possible to achieve a fast inference time while maintaining very good detection accuracy (mAP) for the
four different classes of cones when a tiny version of the YOLO net and a higher image resolution of 608x608 pixels are
employed. This result is important in the context of real-time computation for autonomous race cars.

We have shown that image perturbations impact the detection accuracy of version 4 of YOLO, even though the latter
already implements regularization techniques such as data augmentation. On the other hand, by explicitly augmenting
the training set with perturbed images, we obtained improved mean average precision for test images under these types of
perturbations when compared to the YOLO net trained on the original set. Furthermore, this extra data augmentation was
shown to be crucial when the test images were altered with out-of-distribution perturbations, such as new object classes
(birds and cats) of shape, size, and color similar to ones found in cones.

As future work, the architecture of the CNNs in YOLO could be further investigated in terms of number of convolu-
tional and pooling layers as well as size of the kernel for each layer. This could further enhance the cone detection for
more difficult cases: when the cone is very small or occluded, for instance. Integration to the pipeline of a racing car and
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usage of the investigation of version 5 of YOLO is currently being done by our group.

5. REFERENCES

Aggarwal, C.C., 2018. Neural Networks and Deep Learning. Springer. ISBN 9783319944623.
Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M., 2020. “Yolov4: Optimal speed and accuracy of object detection”. arXiv

preprint arXiv:2004.10934.
Caporale, D., Settimi, A., Massa, F., Amerotti, F., Corti, A., Fagiolini, A., Guiggiani, M., Bicchi, A. and Pallottino, L.,

2019. “Towards the design of robotic drivers for full-scale self-driving racing cars”. In ICRA 2019. pp. 5643–5649.
Chen, T., Li, Z., He, Y., Xu, Z., Yan, Z. and Li, H., 2019. “From perception to control: an autonomous driving system for

a formula student driverless car”. CoRR, Vol. abs/1909.00119.
de la Iglesia Valls, M., Hendrikx, H.F.C., Reijgwart, V., Meier, F.V., Sa, I., Dubé, R., Gawel, A.R., Bürki, M. and

Siegwart, R., 2018. “Design of an autonomous racecar: Perception, state estimation and system integration”. CoRR,
Vol. abs/1804.03252.

Dhall, A., Dai, D. and Gool, L.V., 2019. “Real-time 3d traffic cone detection for autonomous driving”. 2019 IEEE
Intelligent Vehicles Symposium (IV).

Dodel, D., Schötz, M. and Vödisch, N., 2020. “FSOCO: the formula student objects in context dataset”. CoRR, Vol.
abs/2012.07139.

Dodge, S.F. and Karam, L.J., 2016. “Understanding how image quality affects deep neural networks”. CoRR, Vol.
abs/1604.04004.

Goodfellow, I.J., Bengio, Y. and Courville, A., 2016. Deep Learning. MIT Press, Cambridge, MA, USA.
He, K., Zhang, X., Ren, S. and Sun, J., 2014. “Spatial pyramid pooling in deep convolutional networks for visual

recognition”.
Kabzan, J., Valls, M.d.l.I., Reijgwart, V., Hendrikx, H.F.C., Ehmke, C., Prajapat, M., Bühler, A., Gosala, N., Gupta, M.,

Sivanesan, R. et al., 2019. “Amz driverless: The full autonomous racing system”. arXiv preprint arXiv:1905.05150.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X. and Pietikäinen, M., 2019. “Deep learning for generic object

detection: A survey”. International Journal of Computer Vision, Vol. 128, No. 2, p. 261–318.
Liu, S., Qi, L., Qin, H., Shi, J. and Jia, J., 2018. “Path aggregation network for instance segmentation”. In 2018 IEEE/CVF.

pp. 8759–8768.
Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S., Bethge, M. and Brendel, W.,

2019. “Benchmarking robustness in object detection: Autonomous driving when winter is coming”. CoRR, Vol.
abs/1907.07484.

Redmon, J., 2013–2016. “Darknet: Open source neural networks in c”.
Redmon, J. and Farhadi, A., 2018. “Yolov3: An incremental improvement”. arXiv preprint arXiv:1804.02767.
Redmon, J.S.D.R.G.A.F., 2016. “(YOLO) You Only Look Once”. Cvpr. ISSN 01689002.
Ren, S., He, K., Girshick, R.B. and Sun, J., 2015. “Faster R-CNN: towards real-time object detection with region proposal

networks”. CoRR, Vol. abs/1506.01497.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. and Savarese, S., 2019. “Generalized intersection over union:

A metric and a loss for bounding box regression”. In CVPR.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,

Berg, A.C. and Fei-Fei, L., 2015. “ImageNet Large Scale Visual Recognition Challenge”. International Journal of
Computer Vision (IJCV), Vol. 115, No. 3, pp. 211–252.

Shafiee, M.J., Jeddi, A., Nazemi, A., Fieguth, P. and Wong, A., 2021. “Deep neural network perception models and
robust autonomous driving systems: Practical solutions for mitigation and improvement”. IEEE Signal Processing
Magazine, Vol. 38, No. 1, pp. 22–30.

Simonyan, K. and Zisserman, A., 2015. “Very deep convolutional networks for large-scale image recognition”.
Strobel, K., Zhu, S., Chang, R. and Koppula, S., 2020. “Accurate, low-latency visual perception for autonomous racing:

Challenges, mechanisms, and practical solutions”.
Tian, H., Ni, J. and Hu, J., 2018. “Autonomous driving system design for formula student driverless racecar”. CoRR, Vol.

abs/1809.07636.
Wang, C., Liao, H.M., Yeh, I., Wu, Y., Chen, P. and Hsieh, J., 2019. “Cspnet: A new backbone that can enhance learning

capability of CNN”.
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y. and Girshick, R., 2019. “Detectron2”.

6. RESPONSIBILITY NOTICE

The authors are solely responsible for the printed material included in this paper.


