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Abstract

Robot Navigation Systems Autonomous mobile robots must be
able to safely and purposefully navigate in complex dynamic
environments, preferentially considering a restricted amount of
computational power as well as limited energy consumption.
In order to turn these robots into commercially viable domestic
products with intelligent, abstract computational capabilities,
it is also necessary to use inexpensive sensory apparatus such
as a few infra-red distance sensors of limited accuracy. Current
state-of-the-art methods for robot localization and navigation
require fully equipped robotic platforms usually possessing ex-
pensive laser scanners for environment mapping, a consider-
able amount of computational power, and extensive explicit
modeling of the environment and of the task.

This thesis The research presented in this thesis is a step towards
creating intelligent autonomous mobile robots with abstract
reasoning capabilities using a limited number of very simple
raw noisy sensory signals, such as distance sensors. The basic
assumption is that the low-dimensional sensory signal can be
projected into a high-dimensional dynamic space where learn-
ing and computation is performed by linear methods (such as
linear regression), overcoming sensor aliasing problems com-
monly found in robot navigation tasks. This form of computa-
tion is known in the literature as Reservoir Computing (RC),
and the Echo State Network is a particular RC model used in
this work and characterized by having the high-dimensional
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space implemented by a discrete analog recurrent neural net-
work with fading memory properties. This thesis proposes a
number of Reservoir Computing architectures which can be
used in a variety of autonomous navigation tasks, by model-
ing implicit abstract representations of an environment as well
as navigation behaviors which can be sequentially executed in
the physical environment or simulated as a plan in deliberative
goal-directed tasks.

Navigation attractors A navigation attractor is a reactive robot
behavior defined by a temporal pattern of sensory-motor cou-
pling through the environment space. Under this scheme, a
robot tends to follow a trajectory with attractor-like charac-
teristics in space. These navigation attractors are character-
ized by being robust to noise and unpredictable events and by
having inherent collision avoidance skills. In this work, it is
shown that an RC network can model not only one behavior,
but multiple navigation behaviors by shifting the operating
point of the dynamical reservoir system into different sub-space
attractors using additional external inputs representing the se-
lected behavior. The sub-space attractors emerge from the
coupling existing between the RC network, which controls the
autonomous robot, and the environment. All this is achieved
under an imitation learning framework which trains the RC
network using examples of navigation behaviors generated by
a supervisor controller or a human.

Implicit spatial representations From the stream of sensory in-
put given by distance sensors, it is possible to construct im-
plicit spatial representations of an environment by using Reser-
voir Computing networks. These networks are trained in a
supervised way to predict locations at different levels of ab-
straction, from continuous-valued robot’s pose in the global
coordinate’s frame, to more abstract locations such as small
delimited areas and rooms of a robot environment. The high-
dimensional reservoir projects the sensory input into a dy-
namic system space, whose characteristic fading memory dis-
ambiguates the sensory space, solving the sensor aliasing prob-
lems where multiple different locations generate similar sen-
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sory readings from the robot’s perspective.

Hierarchical networks for goal-directed navigation It is pos-
sible to model navigation attractors and implicit spatial repre-
sentations with the same type of RC network. By constructing
an hierarchical RC architecture which combines the aforemen-
tioned modeling skills in two different reservoir modules oper-
ating at different timescales, it is possible to achieve complex
context-dependent sensory-motor coupling in unknown envi-
ronments. The general idea is that the network trained to
predict the location and orientation of the robot in this ar-
chitecture can be used to select appropriate navigation attrac-
tors according to the current context, by shifting the operating
point of the navigation reservoir to a sub-space attractor. As
the robot navigates from one room to the next, a correspond-
ing context switch selects a new reactive navigation behavior.
This continuous sequence of context switches and reactive be-
haviors, when combined with an external input indicating the
destination room, leads ultimately to a goal-directed naviga-
tion system, purely trained in a supervised way with examples
of sensory-motor coupling.

Generative modeling of environment-robot dynamics RC
networks trained to predict the position of the robot from the
sensory signals learns forward models of the robot. By using
a generative RC network which predicts not only locations
but also sensory nodes, it is possible to use the network in the
opposite direction for predicting local environmental sensory
perceptions from the robot position as input, thus learning an
inverse model. The implicit map learned by forward models
can be made explicit, by running the RC network in reverse:
predict the local sensory signals given the location of the robot
as input (inverse model). Moreover, by cutting interference
from the environment and letting this generative network run
in closed loop by using only their self-predictions which are
fed back to the reservoir, it is possible to internally predict
future scenarios and behaviors without actually experiencing
them in the current environment (a process analogous to
dreaming), constituting a planning-like capability which
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opens new possibilities for deliberative navigation systems.

Unsupervised learning of spatial representations In order to
achieve a higher degree of autonomy in the learning process
of RC-based navigation systems which use implicit learned
models of the environment for goal-directed navigation, a new
architecture is proposed. Instead of using linear regression, an
unsupervised learning method which extracts slowly-varying
output signals from the reservoir states, called Slow Feature
Analysis, is used to generate self-organized spatial representa-
tions at the output layer, without the requirement of labeling
training data with the desired locations. It is shown exper-
imentally that the proposed RC-SFA architecture is empow-
ered with an unique combination of short-term memory and
non-linear transformations which overcomes the hidden state
problem present in robot navigation tasks. In addition, ex-
periments with simulated and real robots indicate that spatial
activations generated by the trained network show similarities
to the activations of CA1 hippocampal cells of rats (a specific
group of neurons in the hippocampus).



Samenvatting

Robotnavigatiesystemen Autonome mobiele robots moeten vei-
lig en doelgericht kunnen navigeren in complexe dynamische
omgevingen, bĳ voorkeur met inachtname van een beperkte
hoeveelheid rekenkracht en een beperkt energieverbruik. Om
van deze robots commercieel haalbare huis-en-tuin-producten
te maken met de intelligentie en de capaciteiten om abstracte
berekeningen te maken, zĳn ook goedkope sensoren nodig, bĳ-
voorbeeld zĳn infrarood-afstandssensoren met beperkte nauw-
keurigheid. De huidig beste methoden voor robotlocalisatie en
-navigatie vereisen echter volledig uitgeruste robotplatformen
met dure laserscanners om de omgeving in kaart te brengen,
een belangrĳke hoeveelheid rekenkracht en uitgebreide expli-
ciete modellering van zowel de omgeving als de uit te voeren
taak.

Deze thesis Het onderzoek voorgesteld in deze doctoraatsthesis
is een stap richting de ontwikkeling van intelligente autono-
me mobiele robots met abstracte redeneermogelĳkheden maar
met gebruik van een beperkt aantal zeer eenvoudige senso-
ren die ruwe en ruizige signalen leveren, zoals bĳvoorbeeld
in afstandssensoren het geval is. The basisaanname is dat de
laagdimensionale sensorsignalen geprojecteerd kunnen worden
op een hoogdimensionale dynamische ruimte waarbĳ leren en
berekenen gebeurt aan de hand van lineaire methoden (zoals
lineaire regressie). Dit vermĳdt problemen van sensorverwar-
ring zoals vaak voorkomt in robotnavigatietaken. Deze manier
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van rekenen is in de literatuur gekend als Reservoir Computing
(RC). Het Echo State Network is zo een RC-model dat in dit
doctoraatswerk gebruikt wordt. Het wordt gekarakteriseerd
door een hoogdimensionale ruimte gëımplementeerd door een
discreet analoog teruggekoppeld neuraal netwerk met een uit-
dovend geheugen. Deze thesis stelt een aantal Reservoir-
Computing-architecturen voor die gebruikt kunnen worden in
autonome navigatietaken, door impliciet abstracte representa-
ties van een omgeving te modelleren en door navigatiegedrag
te leren dat sequentieel uitgevoerd kan worden in de fysieke
omgeving, ofwel gesimuleerd als een plan in doelgerichte taken.

Navigatie-attractors Een navigatie-attractor is een reactief ro-
botgedrag, gedefinieerd door een temporeel patroon van sensor-
motor-koppeling in de omgevingsruimte. In dit patroon heeft
de robot de neiging om een traject te volgen met attractor-
achtige karakteristieken. Deze navigatie-attractoren zĳn geka-
rakteriseerd door hun robuustheid voor ruis en onvoorspelba-
re gebeurtenissen en door hun inherente botsingsvermĳdings-
vaardigheden. In dit werk tonen we aan dat een RC-netwerk
niet enkel één gedrag kan modelleren maar ook verschillende
navigatiegedragingen. Dit kan door het werkingspunt van het
dynamische reservoirsysteem te verschuiven naar verschillen-
de subruimte-attractors door gebruik te maken van bĳkomende
externe ingangen die het geselecteerde gedrag voorstellen. De
subruimte-attractors ontstaan door de koppeling tussen het
RC-netwerk, dat de autonome robot controleert, en de omge-
ving. Dit alles bereiken we in een raamwerk voor imitatieleren
dat het RC-netwerk traint door voorbeelden van navigatiege-
drag gegenereerd door een opzichter-controller of een mens.

Impliciete ruimtelĳke representaties Uit de stroom van sensor-
gegevens afkomstig van de afstandssensors kunnen we impli-
ciete ruimtelĳke representaties van een omgeving samenstellen
door het gebruik van Reservoir-Computing-netwerken. Deze
netwerken zĳn getraind op een gesuperviseerde wĳze om lo-
caties op verschillende abstractieniveaus te voorspellen, van
de robotpositie met continue waarden in de globale coordi-
natenruimte tot de meer abstracte locaties zoals kleine afge-
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bakende gebieden en omgevingskamers. Het hoogdimensione-
le reservoir projecteert de sensorgegevens in een dynamische-
systeemruimte, waarvan het karakteristieke uitdovend geheu-
gen de sensorruimte expandeert en zo het sensorverwarrings-
probleem oplost. Dat probleem bestaat erin dat verschillende
locaties voor de robot als gelĳkaardig waargenomen sensorge-
gevens genereren. In een tweede aanpak gebruiken we niet de
lineaire regressie maar wel een ongesuperviseerde leermethode
die traagvariërende uitgangssignalen uit de reservoirtoestan-
den extraheert. Deze methode wordt Slow Feature Analysis
genoemd en wordt gebruikt om autonoom ruimtelĳke repre-
sentaties te vormen op de uitgangslaag, zonder de vereiste la-
bels van trainingsgegevens met de gewenste locaties.

Hierarchische netwerken voor doelgerichte navigatie Het is
mogelĳk om, met hetzelfde type van RC-netwerk, zowel
navigatie-attractors als impliciete ruimtelĳke representaties te
modelleren. Door een hierarchische RC-architectuur te con-
strueren die de hoger vermelde modelleringsmogelĳkheden in
twee verschillende reservoirmodules combineert, kunnen we
complexe contextafhankelĳke sensor-motor-koppeling in onge-
kende omgevingen bereiken. Het algemeen principe is dat het
netwerk, dat getraind werd om de locaties en orientatie van de
robot in deze architectuur te voorspellen, gebruikt kan wor-
den om geschikte navigatie-attractors te selecteren volgens de
huidige context. Dit gebeurt door het verschuiven van het
werkingspunt van het navigatie-reservoir naar een subruimte-
attractor. Terwĳl de robot van de ene naar de volgende kamer
navigeert, selecteert een overeenstemmende contextomschake-
ling een nieuwe reactief navigatiegedrag. Deze voortdurende
opeenvolging van contextomschakelingen en reactieve gedra-
gingen, gecombineerd met een externe ingang die de bestem-
mingskamer aanduidt, leidt uiteindelĳk tot een doelgericht na-
vigatiesysteem dat uitsluitend getraind is op basis van imita-
tieleren.

Generatieve modellering van omgeving-robot-dynamica
Door gebruik te maken van een generatief RC-netwerk dat
niet enkel locaties voorspelt maar ook sensorsignalen is het
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mogelĳk het netwerk in de tegenovergestelde richting te
gebruiken om locale omgevingspercepties te voorspellen uit
de robotpositie. Dit leidt tot een expliciete kaartgeneratie
bĳ gegeven robotpositie. Het interne simulatiemechanisme
dat dit generatieve netwerk toelaat autonoom voorspellingen
te genereren die teruggekoppeld worden naar het reservoir,
laat toe om intern toekomstige scenarios en gedragingen
te voorspellen, zonder ze effectief in de huidige omgeving
waar te nemen. Dit vormt de mogelĳkheid tot planning
en opent nieuwe mogelĳkheden voor onderhandelende
navigatiesystemen.

Ongesuperviseerd leren van ruimtelĳke representaties
We willen een hogere graad van autonomie bereiken in het
leerproces van RC-gebaseerde navigatiesystemen die gebruik
maken van impliciet aangeleerde omgevingsmodellen voor
doelgerichte navigatie. Daartoe wordt een nieuwe architectuur
voorgesteld. In de plaats van lineaire regressie gebruiken we
nu een ongesuperviseerde methode om automatisch gevormde
ruimtelĳke representaties aan de uitgangslaag te genereren.
Deze methode onttrekt traag-variërende uitgangssignalen
uit de reservoirtoestanden en wordt Slow Feature Analysis
genoemd. Bovendien vereist de generatie van de ruimtelĳke
representaties geen etikettering van trainingsdata met de
gewenste locaties. Er wordt experimenteel aangetoond dat
de voorgestelde RC-FSA-architectuur de unieke combinatie
in zich heeft van korte-termĳngeheugen en niet-lineaire
transformaties. Daardoor vermĳdt het het verborgen-
toestandsprobleem dat typisch is voor robotnavigatietaken.
Experimenten met gesimuleerde en echte robots tonen bo-
vendien aan dat ruimtelĳke activaties gegenereerd door het
getrainde netwerk gelĳkenissen vertonen met de activaties
van CA1-hippocampale cellen in ratten (een specifieke groep
neuronen in de hippocampus).
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1
Introduction

This PhD thesis proposes a new efficient and biologically inspired
way of modeling navigation tasks for autonomous mobile robots hav-
ing restrictions on cost, energy consumption, and computational
complexity. It is based on the recently proposed Reservoir Comput-
ing approach for training Recurrent Neural Networks. In this chap-
ter, first, a brief introduction is given on top-down and bottom-up
approaches to Artificial Intelligence as well as to connectionist mod-
els. Then, I describe the main types of robot navigation systems,
giving an overview on some of such systems. Afterwards, an intro-
ductory section on modeling navigation with dynamical systems is
presented, which serves as a base for the next chapters in this thesis.
To conclude, the main contributions and the structure of this work
are presented.

1.1 Artificial Intelligence

Artificial intelligence has been portrayed to society and in science fic-
tion as a technology which enables the creation of intelligent human-
like creatures or robots which possess competences and skills at the
same level of human intelligence. However, the reality is that, nowa-
days, AI has not been able to create a completely true intelligent
and autonomous system with a general set of human-like skills.

Current AI systems possess very specific competences, the so-
called expert systems, which are of a great value for helping decision
making for humans, but are very limited skill-wise and in terms of
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robustness and adaptation to dynamic environments. They work
very well indeed, but for what they were specifically built for. Once
environments get more stochastic and unpredictable, these systems
will have difficulties in dealing with unforeseen events which were
not taken into account during their design.

1.1.1 Top-down vs. Bottom-up Approaches

Symbolic models in traditional AI systems are based on an explicit
symbolic representation of the world stored in a knowledge base. Ab-
straction and specific competences are explicitly modeled with the
help of symbols and inference rules which combine symbol strings
into new, cognitively meaningful ones. Thus, learning is achieved
through manipulation of symbols, disregarding the substrate or the
general architecture which makes that possible: the brain. This is
termed the top-down approach in AI, which is characterized by
modeling cognitive capabilities through explicit symbolic rules.

Moreover, symbolic models are strongly based on the concept of
abstraction. The ”intelligent” part of these systems, i.e., the sym-
bolic manipulation, is completely separate from other modules such
as perception and movement generation which are delegated to a
less relevant class of skills (Brooks, 1991). But the perception and
movement generation competences are actually the hard part to be
designed. High-level abstract cognitive competences of the modern
human being was only achieved after a very long-term evolution
of survival skills of which perception and motor competences are
the most relevant. So, living systems evolved bottom-up, starting
with unicellular organisms and going to more complex multicellular
systems, invertebrates, and finally to vertebrates which originated
about 525 million years ago. Anatomically modern humans origi-
nated a mere 200, 000 years ago.

Thus, in order to achieve a truly intelligent autonomous system
it is more reasonable to start from the bottom self-regulating mech-
anisms of intelligence which govern living beings, such as learning
at the neuronal level, and build up increasingly more complex com-
petences for self-preservation, social cooperation and so on.

The usual advantages and prominent features of the bottom-up
approach are:
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• robustness and adaptation to changes in a dynamic envi-
ronment;

• tolerance to malfunction of some processing units, robust op-
eration;

• learning increasingly more complex competences from the
interaction with the world

• implicit world representations are constructed with sen-
sory perceptions given by the interaction with the world

These characteristics imply a few things. First, there is the con-
cept of embodiment which is closely related to interaction of the
intelligent system with the world. Embodied cognition states that
body, brain and the world are the main constituting parts of an
intelligent system (Wilson, 2002), i.e., that the mind is shaped by
the body and by the interaction of the latter with the world. This
ultimately leads to the notion of learning and emergent behavior,
a direct result of the interplay between body, brain and the envi-
ronment. Learning is a capability resulting from the inter-celullar
chemical interactions in the brain, where massive parallel intercon-
nections of its basic constituting elements, the neurons, define a dis-
tributed knowledge representation system which changes over time
as to maximize utility or survival. It is from these learning mecha-
nisms at the cellular level that intelligent behavior as well as abstract
implicit world representations are made possible. Additionally, it is
not reasonable to completely separate living organisms from the
environment they live in, because one affects the other, i.e., both
systems change each other through feedbacks: sense => process
(possibly change implicit representation) => act => environment
(change) => sense and so on.

As a result, intelligent autonomous systems are inherently fit to
their body and to their environment. This can also be seen from
the perspective of evolution which works by evolving both the phys-
ical body and the mind (in the form of innate behaviors) which are
subject to environmental pressure. In this way, it is the environ-
ment which defines how individuals evolve, learn and understand
the world.
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The learning capacity of intelligent systems also allows them
to adapt to a dynamic environment which changes over time and
generates unpredictable events. As the system is always learning, it
can adapt as well to new environments and new situations without
the need to redesign the whole system.

A second point is that the bottom-up approach makes it possible
to design inherently fault-tolerant systems once they are formed
by distributed control modules or processing units (Brooks, 1991),
such as neurons in connectionist models. The non-centralized nature
of these systems is such that the malfunctioning of some units do
not affect the operation of the system as a whole.

A third point refers to the capacity to learn increasingly more
complex behaviors or competences (Steels, 1993). As a result
from evolution, an individual is born with a predefined or innate
set of behaviors. From this basic set of unconditioned responses to
the environment, an intelligent autonomous system is able to learn
more complex responses through conditioning (Pavlov, 1927; Skin-
ner, 1953) or even by imitating their peers (Heyes, 1994; Rizzolatti
and Craighero, 2004). Hierarchies in the brain, which are innate
structures formed by evolutionary processes, can also play an im-
portant role in learning more abstract concepts as the neural activity
goes to deeper layers in the hierarchies.

This work has its roots at the bottom-up approach for designing
intelligent systems, for the reasons explained above.

1.1.2 Connectionist Models

Connectionist models are constituted of interconnected networks of
simple processing units. The most common form of connectionism
is given by an artificial neural network (ANN). As the name sug-
gests, it is an artificial and simplified model of networks found in
the human brain. As the networks of neurons in the brain, ANNs
are formed by decentralized networks of interconnected units which
learn by modification of their connection weights.

These models are used in a variety of fields and applications,
including: optical character recognition (LeCun et al., 1989; Simard
et al., 2003) (achieving state-of-the-art performance), autonomous
flying of aircrafts in situations of failure (Anon, 1999), fault detec-
tion in industrial processes (Bishop, 1995) and medical diagnosis
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and analysis (Ster et al., 1996).

1.1.2.1 Artificial Neural Networks

The brain is a highly complex, nonlinear and parallel information
processing system. Its main constituent cells, known as neurons, are
organized in such a way that certain tasks (e.g., pattern recognition,
perception and motor control) are computed much faster than in
the fastest existent digital computer. It is estimated that there
are about 1011 neurons in the brain. Neurons collect input signals
through structures called dendrites. The input signals are processed
in the soma and the resulting output signals are transmitted to
other neurons through axons and its ramifications (Fig. 1.1). The
area between an axon of a neuron and a dendrite of another neuron
is called synapse. It has an important role in the transmission
of signals between cells. A synapse can alter a signal originating
from an axon or it can even obstruct the transit of a signal to a
dendrite. Furthermore, synapses can be modified during the flow
of signals between neurons, making likely that they are associated
with memory and learning (Haykin, 1999).

McCulloch and Pitts proposed the first mathematic neuron model
in 1943 (McCulloch and Pitts, 1943). In their work, they describe
the mathematics of neural networks. The proposed model is based
on the neurophysiologic plausibility of a neuron with a soma function
and a threshold, where the weights represent the biological neuron
synapses. Later, it was shown that a neural network with a sufficient
number of neurons and with a suitable learning procedure could
approximate any computable function (Haykin, 1999). Fig. 1.2
shows the formal model proposed by McCulloch and Pitts, where
u = [u1, u2, · · · , un] is the input vector and w = [w1, w2, · · · , wn]T
is the synaptic weights vector related to the neuron memory. The
neuron output is calculated by:

y = f

(
n∑
i=1

uiwi

)
(1.1)

where: f is a nonlinear threshold function (the output is high when
the sum exceeds a certain limit; otherwise, the output is very low).

There are many models of artificial neural networks in the liter-
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Figure 1.1: Model of biological neuron.

ature. In general, these models have one of the following architec-
tures: one-layer architecture, multi-layer architecture or recurrent
architecture (Fig. 1.3). The former two are feedforward networks,
and are characterized by an unidirectional flow of activity from the
input units to the output units. On the other hand, recurrent net-
works have at least one cyclic path connecting the neurons, which
means that the previous state of the network influences the current
state as in a dynamical system.

Besides the diversity of architectures for neural networks, there
is also a variety of learning algorithms for changing the weights of
the network. One of the methods more disseminated for the learning
of multi-layer perceptrons (MLPs) is the gradient-descent method
(Rumelhart et al., 1986). The error backpropagation method, an
efficient way to compute gradients, is executed in the opposite di-
rection to the usual propagation of activity in the network, what
makes this method biologically implausible. As this method is based
on stochastic gradient-descent, it suffers from slow convergence and
the learning process can get stuck in a local error minimum. Fur-
thermore, it is not trivial to choose an appropriate network topology,
i.e., the number and size of hidden layers, for a given task. This is
because a too simple model, with few hidden units, may cause un-
derfitting, while an excessively complex model, with many hidden
units, may cause overfitting:

Underfitting happens when the prediction performance is poor
due to the low number of model parameters with respect to
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Figure 1.2: Artificial neuron model.

number of training observations.

Overfitting happens when the model describes small random fluc-
tuations in the training set instead of the underlying desired
relationship. This causes a poor predictive performance on
test (unseen) data and is usually associated with complex
models which have too many parameters relative to the num-
ber of training observations.

It is also difficult to properly train deep networks (with many layers)
with this method, since the gradient vanishes for the deepest layers.

1.1.2.2 Recurrent Neural Networks

While feedforward networks are suitable for implementing static
input-output mappings, recurrent neural networks (RNNs) imple-
ment dynamical systems and are more biologically plausible.

One of the early models of recurrent networks is the Hopfield
network (Hopfield, 1982), although it is not a general RNN as it is
not designed to process sequences of patterns, but it requires sta-
tionary inputs instead. Its weight connection matrix is symmetric
(to guarantee asymptotic convergence of the energy minimization
function), and all units connect to each other, except to themselves
(Fig. 1.3(c)). The Hopfield network is usually used as an associa-
tive memory, where the patterns to be learned are encoded as stable
fixed-point attractors in the state space. Training this network con-
sists of finding the weights which minimize an energy-based cost
function (using Hebbian learning (Hebb, 1949)).

Some other early simple models of recurrent networks are Jordan
(Jordan, 1986) and Elman (Elman, 1990) networks. These networks
can maintain contextual information in their states by feeding back



(a) One-layer architecture (b) Multi-layer architecture

(c) Recurrent architecture
(Hopfield network)

Figure 1.3: Architectures of neural networks.
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the activations of hidden units (for Elman networks) and output
units (for Jordan networks) to input units.

The most used learning method for RNNs is Backpropagation
through time (BPTT) (Werbos, 1990). This method unfolds the
network in time, removing recurrences by creating several identi-
cal layers representing consecutive timesteps, and then performing
standard error back-propagation on this unfolded network for the
computation of gradients.

The known problems with BPTT originates partially from the
error backpropagation method based on gradient-descent: slow con-
vergence issues, and if the learning converges, it is not guaranteed
to find the global optimum. Additionally, bifurcations may occur
during the training process, which could even cause an unexpected
growth of the error in the vicinity of bifurcations (Doya, 1992). In
practice, only small networks of up to 20 units are used, and mem-
ory spans are usually limited to about 20 timesteps due to the fact
that the backpropagated error gradient vanishes exponentially over
time (Bengio Y., 1994).

Another method used to train RNNs is real time recurrent
learning (RTRL) (Williams and Zipser, 1989; Doya, 2002). It is
used in online learning tasks as it computes the error gradient at
every timestep. As it is very computationally expensive, its use is
limited to very small networks.

1.1.2.3 Reservoir Computing

In order to overcome the downsides of traditional RNN training such
as BPTT and RTRL, a novel paradigm of computation with dynam-
ical systems, namely Reservoir Computing (RC), has been proposed
in (Verstraeten et al., 2007) which can be utilized to achieve efficient
training of recurrent neural networks. RC-based systems possess two
parts: a recurrent non-linear layer, called reservoir, and a linear
readout output layer (Fig. 1.4). The main aspect of an RC network
is that the recurrent connections of the reservoir are fixed, whereas
the readout output weights are the only ones that are trained. This
characteristic simplifies a lot the training of recurrent networks, as
any standard classification or regression method can be used to train
the output layer. In practice, typically linear methods are chosen as
they ensure convergence of the training process to a global optimum.
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input

u

reservoir

x

output

y

Figure 1.4: Reservoir Computing (RC) network. The reservoir is a non-linear dynamical
system usually composed of recurrent sigmoid units. It projects the input into a high-
dimensional non-linear space, where it is easier to apply linear regression or classification.
Temporal, context-dependent tasks such as time series prediction are well handled by RC.
Solid lines represent fixed, randomly generated connections, while dashed lines represent
trainable or adaptive weights.

Two RC models for RNN training have been invented indepen-
dently: the Echo State Network (ESN) (Jaeger, 2001) and the Liquid
State Machine (LSM) (Maass et al., 2002). While the former ap-
plies for networks of analog sigmoid neurons as reservoirs, the latter
is more general but typically uses spiking neural networks in the
reservoir layer. An even earlier RC model applied to sensory-motor
sequence learning has been proposed in (Dominey, 1995).

1.2 Robot Navigation Systems

The exploration of unknown environments in the real world has con-
stantly caused a great appeal not only to the scientific community,
but also to the humanity in general. The implementation of mobile
robots for such use is not an easy task.

Most of current mobile robots operate in simple and controlled
environments. In general, these robots are assisted by placement
of special landmarks in the target environment, indicating the path
to be followed. In this context, the development of autonomous
robots, which are adaptive to complex and unknown environments,
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is a reason of intense research.
Usually it is possible to understand mobile robot navigation as

a problem of establishing trajectories, so that tasks (goals) are ac-
complished with acceptable performance. The vehicle tasks could
be, for example: to capture targets, to deviate from obstacles, to
follow walls, to recharge batteries, to exploit the environment, etc.

Important applications come up from the development of mo-
bile robots that are capable of operating in complex environments:
surface cleaning (floors, industrial tanks, ship hulls, external struc-
tures of buildings, ducts, etc.), transport of materials, e.g., crop of
agricultural products, and vigilance systems.

Research about navigation systems has been done in several
ways, depending on the characteristics of the environment, the robot
model, the type of the task, and the performance criteria (Arkin,
1998). A class of navigation systems, the autonomous systems, has
captivated the scientific community not only because of the chal-
lenge involved but also because of the strategic importance. Such
systems generate the robot trajectory in an unknown environment
without external help.

1.2.1 Early models of deliberative systems

Standard models of deliberative systems for autonomous navigation
rely on a predefined set of rules for path planning, under the sense-
model-plan-act framework. A lot of design effort has to be put in
creating a map of the environment and modeling all possible events
and situations during robot navigation. These systems also usually
present a planning program which generates the complete trajectory
a priori, which can be computationally expensive.

The first generation of mobile robots endowed with a navigation
system comes from the sixties. Shakey, a mobile robot developed by
Nilsson in 1969 (Nilsson, 1984), had a navigation system that worked
in an environment with special demarcated objects. Its perception
module provided information for another module that used symbolic
inference rules to generate navigation decisions.

Other robots were also based on symbolic processing in the
first decades of research on the area: Hilare in 1977 at Labo-
ratoire d’Automatique et d’Analyse des Systèmes, France (Giralt
et al., 1984), Cart in Stanford (Moravec, 1977), and Rover at CMU
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Figure 1.5: Sequential (functional) modules execution for a mobile robot control system.

(Moravec, 1983). Such robots based their decisions on an internal
world representation that was used for path planning, characterizing
them as deliberative systems (Fig. 1.5).

1.2.2 SLAM

SLAM stands for Simultaneous Localization And Mapping. One way
to achieve purposeful navigation is the ability for self-localization
of an autonomous robot in its environment. Markov localization
(Thrun et al., 2005) or Kalman filtering techniques (Siegwart and
Nourbakhsh, 2004)) for solving the SLAM problem represents the
state-of-the-art in simultaneous localization and mapping (Bailey
and Durrant-Whyte, 2006), but usually requires expensive laser-
range scanners1, and have to take into account the following points:
the modeling of the noise of each sensor, the kinematic model of the
robot, the costly drawing of a priori map of the environment or a
mechanism for map building during navigation, matching sensory
data to the stored map representation for the correction of position
estimation, and so on.

In traditional localization algorithms, the representation of the
stored map can be grid-based, topological, or hybrids (Siegwart and
Nourbakhsh, 2004). Grid-based methods produce metric maps and
have high resolution, while topological maps are more abstract and
describe the environment as a graph of connected nodes. The advan-
tages of probabilistic models are: easy human interpretation of the
robot position in the stored map; accurate descriptions of the map
for grid-based methods (Siegwart and Nourbakhsh, 2004); and ef-

1There are few works in the literature using SLAM for small mobile robots
with few infra-red sensors (Caprari et al., 2001); and visual SLAM with minimal
sensing (using a camera) and computational requirements (Andreasson et al.,
2007).
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Figure 1.6: Layers of behaviors for a mobile robot control system.

ficient planning in topological maps (Thrun et al., 2005). Given
some assumptions, state-of-the-art algorithms, such as the Fast-
SLAM method (Thrun et al., 2005), are able to solve the SLAM
problem.

The SLAM approach lacks in adaptation and learning capabili-
ties and usually requires fully equipped robot platforms with expen-
sive laser scanners of high-precision for environment mapping2. Fur-
thermore, it usually has rather large computational requirements.
This sensory apparatus is currently still very expensive, consume a
lot of power, and cannot easily be applied in small mobile robots
with very limited computational and power requirements.

1.2.3 Behavior-based approach

Behavior-based approaches to robotics have been proposed early in
the literature (Brooks, 1986, 1991; Arkin, 1998). Instead of hav-
ing several modules for perception, world modeling, planning and
execution, they are based on individual intelligent control modules,
where each one contributes to behavior generation for controlling a
robot.

Rodney Brooks suggested an architecture for controlling mobile
robots in 1986 (Brooks, 1986), called Subsumption Architecture.
This model is based on task-achieving behaviors organized in differ-
ent layers of control. Each class of behaviors is implemented in a
specific layer (Fig. 1.6).

Brooks defines a level of competence as an informal specification
of a class of behaviors that the robot can present. Each such level
is implemented in a layer. Depending on the current situation, a
higher level of competence can suppress the output of lower levels
of competence in order to attend the current robot priorities.

2However, it is known that laser scanners tend to become cheaper as its
technology evolves and becomes more common in everyday life.
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The system designed by Brooks aims at robustness (the sys-
tem should work even when some sensors fail or when the environ-
ment changes drastically) and extensibility (more capabilities can be
added to a robot). Besides, it is a behavior-based system and, unlike
deliberative systems, is not based on cognitive processes on an in-
ternal world representation. Interestingly, there is no unique agree-
ment on the difference between reactive and behavior-based systems.
Mataric (2001) presents distinct characteristics for both classes of
systems. On the other hand, Arkin (1998) considers behavior-based
systems as a specific class of reactive systems.

Autonomous robots should be able to learn their abilities through
interaction with the environment. Learning its own internal rules
for sensory-motor coupling in close interaction with the environment
represents a higher degree of autonomy for a robot. This also implies
adaptation and robustness to noise and unpredictable events.

1.2.4 Biologically inspired navigation systems

1.2.4.1 Place cells

Experiments accomplished on rats show that their hippocampus
forms activation patterns that are associated with locations visited
by the rat. These so called place cells encode the spatial location of
the animal into its environment. They fire whenever the animal is in
a particular location (O’Keefe and Dostrovsky, 1971; Moser et al.,
2008), which defines the place field of the cell.

Another type of spatial activation is found in grid cells from the
entorhinal cortex. The activation of these cells have shown to follow
a grid pattern in circular and square environments and probably
have an important role in the formation of place cells (Moser et al.,
2008).

A third type of spatial encoding cells are the head-direction cells,
whose activation is dependent on the rat’s head direction while being
position-invariant.

It is assumed that two classes of input are available for spatial
encoding cells: idiothetic and allothetic. While allothetic inputs
are originated from the external environment (vision, tactile and
auditory signals), idiothetic input could be formed by self-motion
(proprioceptive) signals and encoders which indicate how the body’s
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internal state evolves. The origin of these idiothetic signals and the
mechanisms for the integration of these signals with allothetic input
have not yet been determined (Moser et al., 2008).

1.2.4.2 Overview on existing navigation systems

There are several works in the literature which employ Recurrent
Neural Networks (RNNs) for designing localization and navigation
systems for mobile robots. In (Tani, 1996), RNNs are used for
model-based learning in robot navigation. In order to achieve sit-
uatedness during navigation, a forward model of the mobile robot
is learned in a self-organized way using Backpropagation-through
time. The internal model predicts the next sensory input given the
current sensors (range image and travel distance) and the motor out-
put. In this way, it learns to be situated through interaction with
the environment by learning the environmental attractor in the of-
fline training phase. Other early related works for situated robotics
are Verschure et al. (1992) and more recently Verschure et al. (2003).

Floreano and Mondada (1996) tackle evolutionary strategies for
RNNs in the context of a homing navigation task. In their work,
a RNN is evolved so that a mobile robot drives as long as possible
around an arena and goes back to a recharging area whenever its
battery level is near empty. The evolved RNN learned an internal
representation which is a function of the robot position and of the
battery level.

Other models of hippocampal place cells and biologically-inspired
navigation exist in the literature. In Arleo et al. (2004), unsuper-
vised growing networks are used to build an architecture with idio-
thetic and allothetic components that are combined in a hippocam-
pal place cell layer to support spatial navigation (validated using a
Khepera mobile robot with 2D vision sensors). Their model explic-
itly uses dead-reckoning to track the robot position and associates
place cell firing with the estimated position.

In Milford (2008), a hippocampal place cell model is designed to
solve the SLAM problem. They choose a pragmatic approach, favor-
ing functionality over biologically plausibility. Their model, called
RatSLAM, has a 3D structure for pose cells (representing beliefs
for the robot position and orientation) which learn associative con-
nections with view cells (allothetic representation). They validate
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their model with several mobile robots, equipped with a camera, in
indoor and outdoor environments. Other works oriented towards
modeling an animal’s capability for spatial navigation are given in
(Stroesslin et al., 2005; Chavarriaga et al., 2005). A single learning
technique which maximizes slowness of the output signal applied to
hierarchical networks is able to generate self-organized representa-
tions of place cells as well as of head-direction cells (Franzius et al.,
2007a) without odometry information. A similar method based on
temporal stability for learning hippocampal place cells for mobile
robots is given in (Wyss et al., 2006).

Most of these models are based on rich visual (pixel-based) stim-
uli as external sensory input and/or use odometry for path inte-
gration. For a further review on biologically-inspired localization
models, see Filliat and Meyer (2003) and Trullier et al. (1997).

1.2.5 Towards energy efficient navigation systems

This thesis aims at designing intelligent navigation systems from a
bottom-up perspective, where learning of implicit world representa-
tions and complex sensory-motor coupling is inspired on the implicit,
basic mechanisms of intelligence which control biological systems.
Thus, an essential requirement is that these intelligent systems pro-
cess information and become situated in the environment (Wilson,
2002) by solely using its local view of the environment given by the
sensory apparatus present in the agent or robot.

For that, this work uses a biologically plausible recurrent neural
network based system which can be efficiently trained under the re-
cently emerging paradigm of Reservoir Computing (RC). Training
in RC-based systems gets simplified as the recurrent non-linear part
(called reservoir) is left fixed, while the readout output weights are
the only part to be trained with standard linear regression tech-
niques.

It is advocated in this thesis that RC networks can be used in
a diversity of modeling and navigation tasks by considering small
and energy efficient autonomous mobile robots, an important
research topic in the field of robotics. This is mainly due to their
near-term real world applicability as domestic service robots, such as
e.g. the small and inexpensive iRobot service robots. These robots
must be easy to teach using training sequences generated by a su-
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robot
sensors

actuators

Figure 1.7: Robot controller and environment are coupled systems. A reac-
tive behavior yields a navigation attractor in the environment space. Dashed
connections are trainable.

pervisor or even their behaviors could be evolved in a reinforcement
learning way. In order to make them function properly in complex
and dynamic environments, they need to be aware of their position
as well as to create models of the environment for deliberative plan-
ning. All of this has to be performed using a limited number of
distance sensors with low accuracy, and with a restricted
amount of computational power.

1.3 Modeling Navigation via Dynamical Systems

This section shows the different possibilities and procedures for mod-
eling autonomous navigation systems with Reservoir Computing
(RC) networks.

1.3.1 Navigation attractors

The intelligent navigation systems in this work are designed accord-
ing to the notion of navigation attractor.3 By viewing a reactive
robot controller and its environment as coupled systems (Fig. 1.7),
the robot trajectory resulting from the autonomous navigation forms
a sequential sensory-motor pattern throughout the environ-
ment space (Fig. 1.8). Once projected into the dynamical system
space of the reservoir by stimulating it with sensory signals, the

3The term attractor is used in this thesis more metaphorically and does not
directly relate to the exact definition of attractor in mathematics.
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Figure 1.8: Representation of a reactive navigation attractor or behavior in the envi-
ronment space and desired contracting property.

navigation attractors become embedded into the network through
the coupling of RC network (controller) and environment.

A desired property for reactive navigation attractors is that the
robot converges to an attractor trajectory if placed in another lo-
cation of the environment (Fig. 1.8). Moreover, these reactive be-
haviors should inherently avoid obstacles so that dynamic obstacles
could be circumvented, by moving away from the attractor trajec-
tory and, in the sequence, moving back to the attractor. This confers
robustness capabilities for the controller.

The training of an RC network for modeling a navigation at-
tractor can be achieved through supervised learning, i.e., by observ-
ing a supervisor controller which provides a desired input-output
(sensory-motor) coupling representing the target behavior over time.

1.3.2 Context-based Navigation Attractors

For empowering navigation systems with a more complex and high-
level behavior, it is necessary to simultaneously learn multiple reac-
tive navigation attractors. By decomposing a complex behavior into
simpler ones, such as in Fig. 1.9, it is possible to create execution
plans defining a sequence of task-achieving behaviors as desired (the
simpler behaviors are navigation attractors as defined in the previ-
ous section).

In order to embed multiple reactive behaviors into a single RC
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Figure 1.9: Schematic view of decomposition of high-level behavior into reac-
tive navigation attractors.

network, it is necessary to add external binary inputs to the RC
network (Fig. 1.10), capable of shifting the attractor dynamics to
a confined sub-space corresponding to the selected behavior. The
external input acts as a bias during the execution of a reactive be-
havior. A switch to a different behavior will cause a shift into a
different operating point of the reservoir, which in turn is coupled
to the environment.

As this architecture (Fig. 1.10) is trained using linear regression
on the dynamical system space (only the motor actuators given by
the dashed connections are trained), the shift in the high-dimensional
space caused by the external binary input (which can be a binary
vector for multiple behaviors) makes possible that a linear discrimi-
nation by the readout output layer is sufficient to confine navigation
attractors to different sub-spaces (Fig. 1.11). Thus, this architec-
ture supports the simultaneous learning of many (even conflicting)
behaviors by the trick of shifting the reservoir state space. The
number of behaviors that could be learned is limited by the mem-
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Figure 1.10: Modeling multiple reactive behaviors or navigation attractors using a
single RC network via external binary input channel. Dashed connections are trainable.
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Figure 1.11: Example of two navigation attractors in bi-dimensional dynamical system
space. Dashed arrows represent switching events caused by activities of external input
channels.

ory capacity4 of the network, and determines the size of the external
input vector.

The autonomous coordination of the switches between naviga-
tion attractors may be learned by elaborating an extra hidden layer
which is responsible for autonomously detecting the right time to
switch (Fig. 1.12). This layer should be trained to generate context
switches which indicate a change to a specific navigation attrac-

4The memory capacity (MC) is the capacity of an ESN with linear output
units to reproduce the past input stimulus from the current state. MC is bounded
by the number of neurons nres in the reservoir. A more formal definition is given
in (Jaeger, 2002a). More nonlinear reservoirs have less memory capacity than
linear reservoirs.
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Figure 1.12: Hierarchical networks composed of a reservoir and a trainable
hidden layer for modeling complex sensory-motor coupling based on external
and internal switches. Dashed connections are trainable.

tor for fulfilling the goals of the high-level navigation task. Now,
not only external input, but also activities generated at a hidden
layer can provoke context switches between navigation attractors
(Fig. 1.13).

If this trainable hidden layer can, for instance, model the room
in which the robot is situated (where each unit represents the de-
tection of a specific room, thus a binary value), then, in principle,
for each room a specific navigation attractor or behavior can be
generated. Under this scheme of context-based navigation, a final
destination room would be given as an external input. Each combi-
nation of (external and internal) switches sets the dynamical system
(reservoir) at a confined space, a sub-attractor (i.e., context-based
navigation attractor) corresponding to a specific coupling between
RC-based controller and environment (Fig. 1.13). By training this
architecture in a supervised way with examples of robot trajecto-
ries, an autonomous goal-directed navigation system results from
the composition of low-level reactive behaviors in a sequence con-
trolled by the context switches.

1.3.3 Disambiguation of incomplete state in the dynamical
system space

The importance of training on the dynamical system space is that
the history of sensory readings is encoded in the trajectory of the
dynamical system. While the memoryless sensory space is suscep-
tible to sensor aliasing problems, the dynamical reservoir system
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Figure 1.13: Example of multiple navigation attractors in simplified bi-dimensional dy-
namical system space. Solid arrows represent internal switching events (context switches)
(Fig. 1.12) while dashed arrows represent switching events caused by activities of external
input channels.

has an intrinsic fading memory which overcomes ambiguities present
in the local sensory input space.

This can be viewed more clearly in Fig. 1.14, which shows the
sensory readings and the corresponding dynamical system trajectory
considering three iterations of a hypothetical robot wandering in an
environment. After the t = 1, there are two different paths that the
robot follows, which actually drive the dynamical system to different
points in state space. At t = 3, the robot gets similar sensory
readings in both situations while being at distinct locations in the
environment. Whereas the sensory space is ambiguous because two
different positions yield similar perceptions, the dynamical system
encodes the robot path in its trajectory, disambiguating the local
sensory perception.

An important application of this is robot localization, which
is made possible by the projection of a low-dimensional input space
which provides incomplete information about the environment into
a high-dimensional, nonlinear space with temporal processing capa-
bilities where the location can be linearly extracted or discriminated.
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Figure 1.14: Comparison of dynamical system space and sensory space for two
different paths chosen by a robot. The dynamical system starts at the same
state at t = 1. At t = 3, the robot is at distinct locations, which is associated
to different states in the dynamical system space while the sensory readings are
very similar. Whereas the sensory space is memoryless and susceptible to sensor
aliasing problems, the dynamical system space has an inherent memory which
can be used, for instance, to predict the robot location in the environment or to
perform context-dependent behaviors.
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1.3.4 Timescales and Hierarchies

The dynamical system implemented by the recurrent reservoir is
usually set to operate at the edge of stability for exhibiting rich
dynamics. The speed of the reservoir dynamics can be controlled by
the use of leak rates (Jaeger et al., 2007), which basically enables
individual low-pass filters for each neuron in the reservoir, creating
a internal memory at the neuronal level.

In practice, a single dynamical reservoir system is not able to
model navigation and localization competences simultaneously with
acceptable performance. This is due to the multiplicity of timescales
present in the sensory signal (e.g., when the robot shows differ-
ent speeds) and mainly when each task space requires a different
timescale.

Navigation attractors are competences which require fast dy-
namics in order to cope with quickly changing environments and
unpredictable events. On the other hand, a dynamical system used
to detect the current robot room in a big multi-room environment
should operate at a slower timescale when compared to a navigation
task. This is because context switches provoked by leaving a room
and entering another one do not happen frequently.

In this way, for a goal-directed navigation system based on con-
text switches (Fig. 1.12) to work properly in practice, there must
be a hierarchical architecture with two reservoir networks operating
at different timescales, one to model the navigation attractor and
another one responsible for generating the context switches.

1.3.5 Internal Predictive Simulation of Behaviors

In deliberative navigation systems, it is also necessary to perform
path planning for achieving goal-directed navigation. In this work,
this is done by predicting the future outcome of reactive behaviors.
By coupling the dynamical system with self-predictions of sensory
perceptions and of the robot location, for instance, future scenarios
can be internally simulated based on the reactive behavior present
in the training data. This generative architecture is given in
Fig. 1.15. All sensory and context nodes are trained.

This internal closed loop simulation generates a predictive se-
quence of robot locations and sensory perceptions which defines a
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Figure 1.15: Generative architecture for modeling reactive behaviors which
could be used for path planning. Both sensory nodes and context nodes (e.g.,
for localization) are trained in a supervised way by using feedback from the
environment. During testing, this feedback can be closed such that only self-
predictions are used to stimulate the dynamical system. Only dashed connections
are trained.
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Figure 1.16: Example of navigation attractor in simplified bi-dimensional dy-
namical system space (left) generated by the internal autonomous simulation of a
reactive behavior, executed by feeding back the self-predictions of sensory nodes
and context switches (robot location) (right) for the architecture of Fig. 1.15.
The robot location and the corresponding sensory readings can be predicted in
a future moment without actually driving the robot in the environment.



26 1. Introduction

robot

RC-based

controller

sensors

actuators

reward

Figure 1.17: Reinforcement learning of environment-robot dynamics with RNNs.
Dashed connections are trainable.
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Figure 1.18: Reinforcement Learning shapes navigation attractor in bi-dimensional
dynamical system space as learning evolves. The attractor is dynamic, i.e., changes over
time with learning iterations.

navigation attractor made only by self-predictions. This is possi-
ble because the coupling results from the internal self-predictions,
instead of coupling with the actual environment. Thus, this inter-
nally generated attractor only exists in the dynamical system space
since the environment is not coupled. Fig. 1.16 shows an example of
the navigation attractor in the dynamical system space and corre-
sponding predictions of sensory nodes and context nodes which are
fed back to the reservoir.

This predictive simulation of behaviors could be combined with
the trick of shifting the dynamical system space to confined sub-
spaces by the use of binary inputs when multiple behaviors should be
modeled (as done in Section 1.3.2). In this way, these attractors in
the high-dimensional reservoir space can be linearly discriminated,
making possible the predictive simulation of multiple behaviors.

1.3.6 Iterative Shaping of Navigation Attractors

The aforementioned schemes of modeling navigation attractors with
dynamical systems use supervised learning techniques. After one-
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shot offline training (through linear regression on the reservoir states),
the reservoir embeds the behaviors by observation of the supervi-
sor controller. A second approach to learn navigation attractors is
through reinforcement learning (RL). Under this scheme, the RC
network does not receive a teacher signal, but only a reward signal
usually indicating success or failure (Fig. 1.17). Thus, learning is
achieved by trial and error, which means that a lot of random trials
will take place in the beginning of the learning process. During this
iterative learning procedure, the navigation attractor learned by the
RNN is actually dynamic, i.e., changing over time (Fig. 1.18).

1.4 This thesis

The following sections present the main contributions and results of
this work as well as the structure of this thesis.

1.4.1 Goals and Contributions

This thesis follows a dynamical systems’ approach for modeling au-
tonomous navigation systems for small energy efficient mobile
robots. The goal is to achieve high-level intelligent navigation us-
ing a low-cost sensory apparatus, such as few noisy distance
sensors of limited accuracy, to perceive the environment. With
these aims, intelligent mobile robots becomes commercially viable
as domestic products which can be used for efficient trajectory gen-
eration with inexpensive home cleaning robots such as the iRobot
family of robots.

The dynamical systems’ approach is implemented using Reser-
voir Computing (RC) networks, which enables powerful tem-
poral processing simply using linear regression methods. The dy-
namical system (i.e., the reservoir) is an RNN with fixed weights
used as a temporal kernel to project the low-dimensional sensory
input (given by few noisy distance sensors) into a high-dimensional
nonlinear space. Learning and prediction occurs at a separate out-
put layer. This characteristic is the essential feature which enables
the uncomplicated learning of navigation attractors (or behaviors)
as well as abstract sensor-based environment representations using
small robots with few noisy sensors.
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The dynamical system space has an inherent fading memory
which is able to disambiguate the sensory space from sensor
aliasing problems. This work uses this property for efficient pre-
diction of the location of a mobile robot, driven by a reactive
behavior, in unknown, dynamic, and even symmetric envi-
ronments. All of this is achieved without the use of odometry
information from wheel encoders, so that the robot becomes situ-
ated in its environment solely based on the short-term memory from
the dynamical reservoir of previous sensory inputs.

This work shows an innovative way to model goal-directed
navigation from a bottom-up approach, by the combination of two
RC networks in a hierarchical architecture, one which learns sensor-
based spatial representations of an environment and another one
which models reactive navigation attractors. Context switches, pro-
voked by crossing doors connecting two rooms, are able to direct
navigation as a sequence of robust reactive navigation behaviors.

A first step towards path planning with RC networks is
given in this thesis. By using a generative RC architecture which
trains sensory nodes as well as nodes used for location detection,
the network can be autonomously simulated using its own predic-
tions in closed loop mode, by shutting off the feedback from the
environment after training. This technique when applied to mul-
tiple behaviors can be used to generate predictive trajectories for
each reactive behavior, without actually moving the robot in the
environment.

All of the aforementioned tasks are accomplished in a supervised
learning setting, which can be useful, for example, when teaching or
programming behaviors by demonstration. A contribution towards
autonomy of the learning process in this thesis is given by the un-
supervised learning of sensor-based spatial representations
for small mobile robots in unstructured environments. In principle,
this can make goal-directed navigation much more accessible due to
non-requirement of labeling locations in the training data.

Finally, I show that context-based navigation attractors
can be iteratively shaped through reinforcement learning, on
the base of a sequential execution of simple motor primitives and
without the need to show the desired behavior through a supervisor
(Appendix A).
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The research accomplished and reported in this thesis considers
the following important points:

• the trained systems in this thesis make complex predictions
receiving only low-dimensional input such as from a few
distance sensors of a small mobile robot;

• no pre-processing (apart from normalization) is applied to the
input signal (distance sensors). The dynamical reservoir sys-
tem is excited by the raw input;

• robot sensors are noisy;

• the environment of the robot is unknown (not explicitly
modeled);

• the robot becomes situated through the coupling of the dy-
namical system and the environment observed from the robot’s
point of view.

A list of publications is presented in a separate section at the end
of this book, including the results from this doctorate research.

1.4.2 Structure

Each chapter is summarized below in order of appearance. The
schematic overview showing the interdependence between chapters
or subjects is given in Fig. 1.19.

Reservoir Computing (Chapter 2)

In this chapter, a detailed description on Reservoir Computing is
given, specifically on Echo State Networks, an RC model for ana-
log sigmoid reservoir units. Leaky-integrator units which provide
reservoirs with an flexible way to tune their dynamics to slower
frequencies are discussed here. Following that, two training meth-
ods for the output layer are presented: Least Squares method and
Ridge Regression (Regularized Least Squares). The following sec-
tion elaborates on how to use RC networks to perform dynamic pat-
tern recognition, inclusive considering unbalanced datasets. Error
measures, parameter optimization issues are also presented.
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Figure 1.19: Schematic overview of this thesis showing the relationships between chap-
ters/subjects given by solid arrows representing dependences implemented in this work
and dashed arrows representing future possible extensions of this work. The dashed box
on Shaping Navigation attractors is early work given as an Appendix in this thesis.
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Supervised Learning of Navigation Behaviors (Chapter 3)

This chapter shows that an RC network can model multiple naviga-
tion attractors (or reactive behaviors) by supervised learning of the
desired sensory-motor coupling, where each behavior is learned by
shifting the high-dimensional space of the reservoir with additional
binary inputs. A simulated robot becomes situated when perform-
ing the reactive behavior by the coupling of the dynamical system
and environment. A second experiment models short-term memory
navigation tasks, such as the T-maze task, where the mobile robot
has to remember a previously given temporary stimulus for correct
decision making at a future moment.

Robot Localization (Chapter 4)

Sensor-based spatial representations of several simulated and real
environments and robot models are modeled in a supervised way
with RC networks. As the dynamical reservoir has an inherent fad-
ing memory of past inputs, the system is able to detect the locations
as the robot navigates by considering only the current local sensory
input given by few noisy distance sensors, overcoming sensor aliasing
problems. This ultimately leads to a dynamical system based robot
localization system which does not require the use of odometry.

Goal-directed Navigation (Chapter 5)

This chapter builds upon previous results, by combining the model-
ing of navigation attractors of Chapter 3 and the localization capa-
bility of Chapter 4 for designing a goal-directed navigation system.
The architecture is organized in hierarchies where the localization
module provides context switches for selecting different behaviors in
the navigation module. It is purely based on a supervised learning
procedure where a supervisor generates examples of routes through
multi-room environments using a physically realistic robot model.

Generative Modeling of Environment-Robot Dynamics (Chapter 6)

A generative extension of the localization architecture from Chap-
ter 4 which also trains sensory nodes is presented in this chapter.
The generative network is able to model reactive robot behaviors,
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which is clearly verified when the internal network dynamics is sim-
ulated by shutting off the sensory feedback from the environment
and letting the network autonomously generate what it has learned,
leading to path planning applications.

Unsupervised Learning for Robot Localization (Chapter 7)

Chapter 7 tackles the self-organized formation of spatial representa-
tions of simulated and real-world environments using an hierarchical
architecture and an existent unsupervised learning technique called
Slow Feature Analysis (SFA). The linear SFA output layer learns to
extract slowly-varying features from the non-linear reservoir state
space, forming a non-localized environment representation. A final
upper layer applies sparse coding on the SFA outputs, leading to the
formation of a localized spatial representation similar to ones given
by hippocampal CA1 cells of rats in W-tracks.

Conclusion and Future Work (Chapter 8)

Finally, conclusion and future work is given in Chapter 8.

Appendices

Appendix A describes the research and experimental results on
Reinforcement Learning in non-Markovian Navigation Tasks. Ap-
pendix B presents all (simulated and real) robot models used in this
work.
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Reservoir Computing

2.1 Introduction

Traditional neural network models were designed to process static
spatial input patterns, and are not inherently able to handle time-
varying stimuli or dynamic patterns. To cope with temporal prob-
lems, these networks model time as an additional spatial dimension
by dividing time into bins such that, for example, a 5-bin time win-
dow yields an input layer size of 5ni, where ni is the number of input
signals. In this way, time is treated as an additional spatial dimen-
sion at the level of the inputs, which is not a biologically plausible
approach. Moreover, this time window approach results in a high
number of parameters if larger memory is required.

In a second approach for representing time, neural network mod-
els with recurrent connections allowed for computation based on the
previous state of the network and the current sensory input (Elman,
1990; Jordan, 1986), providing a mechanism of temporal context
that still considered time as a discrete dimension (Buonomano and
Maass, 2009).

The current work is based on the Reservoir Computing (RC)
paradigm (Verstraeten et al., 2007), where a randomly generated
non-linear dynamical system with fixed parameters (weights), such
as an RNN, is used to map the inputs to a high-dimensional space,
in which classification or linear regression is efficiently accomplished.
The states of this dynamical system, called reservoir, are linearly
combined in an adaptive readout output layer, which is the sole
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trained part of the architecture. This type of state-dependent com-
putation has been proposed as a biologically plausible model for cor-
tical processing (Buonomano and Maass, 2009; Maass et al., 2002;
Yamazaki and Tanaka, 2007). Such theoretical models include:
Echo State Networks (Jaeger and Haas, 2004) for analog neurons
and Liquid State Machines (Maass et al., 2002) for spiking neurons.
Backpropagation-decorrelation (BPDC) (Steil, 2004) also uses ana-
log sigmoidal neurons as reservoir, but the learning rule is attained
from a different angle: it is based on an extension of the Atiya-
Parlos recurrent learning (Atiya and Parlos, 2000) which restricts
the adaptation of weights to the output layer.

From a machine learning perspective, a reservoir network, usu-
ally randomly generated and sparsely connected, functions as a tem-
poral kernel, projecting the input to a dynamic non-linear space.
During simulation, the reservoir states form a trajectory which is
dependent on the current external sensory input, but which still
contains memory traces of previous stimuli. Computation in the
output layer occurs by linearly reading out instantaneous states of
the reservoir. In this way, reservoir architectures can inherently
process spatiotemporal patterns.

This chapter is devoted to introducing the Echo State Network
(ESN) model, an RC architecture for analog networks which will be
used for modeling several robotic tasks throughout this thesis. In
the following, leaky integrator neurons for enhancing the reservoir’s
memory are presented, as well as the standard training method (e.g.,
Least Squares) for the readout output layer. Next, Ridge Regression
and state noise injection are introduced as forms of regularization
techniques against over-fitting. Classification with ESNs, error mea-
sures for regression and classification tasks, optimization of reservoir
parameters are also presented in this chapter.

2.2 Echo State Network

An ESN is composed of a discrete hyperbolic-tangent RNN, the
reservoir, and of a linear readout output layer which maps the
reservoir states to the actual output. Let ni, nr, no represent the
number of input, reservoir and output units, respectively, u[n] the
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ni-dimensional external input, x[n] the nr-dimensional reservoir ac-
tivation state, y[n] the no-dimensional output vector. Then the
discrete time dynamics of the ESN is given by the state update
equation

x[n+ 1] = f (Wr
rx[n] + Wr

iu[n] + Wr
oy[n] + Wr

b) , (2.1)

where f() = tanh() is the hyperbolic tangent activation function,
commonly used for ESNs, and by the output computed as:

y[n+ 1] = g (Wo
rx[n+ 1] + Wo

i u[n] + Wo
oy[n] + Wo

b) (2.2)

= g
(
Wout (x[n+ 1],u[n],y[n], 1)

)
(2.3)

= g
(
Woutz[n+ 1]

)
, (2.4)

where: g is a post-processing activation function; Wout is the column-
wise concatenation of Wo

r , Wo
i , Wo

o and Wo
b; and z[n + 1] =

(x[n+ 1],u[n],y[n], 1) is the extended reservoir state, i.e., the con-
catenation of the state, the previous input and output vectors and
a bias term, respectively.

The matrices Wto
from represent the connection weights between

the nodes of the complete network, where r, i, o, b denotes reservoir,
input, output, and bias, respectively. All weight matrices represent-
ing the connections to the reservoir, denoted as Wr

· , are initialized
randomly (represented by solid arrows in Figure 1.4), whereas all
connections to the output layer, denoted as Wo

· , are trained (rep-
resented by dashed arrows in Figure 1.4). Fig. 2.1 is a schematic
representation of Fig. 1.4 which shows the connections and the re-
spective mappings given by the matrices W·

· in (2.1) and (2.2).

Output feedback given by the projection Wr
oy[n] and bias W.

b
are optional. In the absence of these terms, (2.1) and (2.2) become:

x[n+ 1] = f (Wr
rx[n] + Wr

iu[n]) (2.5)
y[n+ 1] = g (Wox[n+ 1]) . (2.6)
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Figure 2.1: Reservoir Computing mapping scheme. Dashed connections are trainable
whereas solid connections are fixed.

Table 2.1: Elements of Fig. 2.1

Signals

u input signal
y output signal
x reservoir state
a weighted sum for reservoir units
m weighted sum for output units

Weights

Wr
i input to reservoir connection matrix

Wr
b bias to reservoir connection matrix

Wr
r reservoir connection matrix

Wr
o output to reservoir connection matrix

Wo
i input to output connection matrix

Wo
r reservoir to output connection matrix

Wo
o output to output connection matrix

Wo
b bias to output connection matrix
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2.3 Reservoir Design and Dynamics

In this section, the procedures for reservoir creation and dynam-
ics tuning are presented. The non-trainable connection matrices
Wr

r,Wr
i ,Wr

o,Wr
b are usually generated from a random distribu-

tion, such as a Gaussian distribution N(0, 1) or a uniform discrete
set {−1, 1}. During this initialization, two parameters are used:

the connection fraction cto
from corresponds to the percentage of

nonzero weights in the respective connection matrix Wto
from.

the scaling υto
from corresponds to the scaling of the respective con-

nection matrix Wto
from such that all weights are rescaled ac-

cording to multiplication υto
fromWto

from.

While the connectivity between units in Wr
i and Wr

r is not that
important for analog, rate-based reservoirs1, although they are
usually created considering sparse connectivity for historic reasons,
the scaling of these matrices has a great influence on the reservoir
dynamics (Verstraeten et al., 2007) and must be tuned for optimal
performance.

The randomly generated Wr
r must be rescaled such that the

dynamical system is stable2 but it still exhibits rich dynamics. As
the ESN is usually nonlinear, this can be achieved by studying a lin-
earized version of the ESN around the equilibrium point (Kuznetsov,
1998). Under this assumption, a necessary condition to guarantee
the Echo State Property (ESP) (Jaeger, 2001) for ESNs, i.e., a
reservoir with fading memory3, is to rescale Wr

r such that the max-
imal singular value of Wr

r is smaller than unity. Conversely, the
ESP is violated for zero input if the spectral radius4 ρ(Wr

r) of the
reservoir connection matrix Wr

r is larger than unity.

1While connectivity or topology structure is not important for analog net-
works, it is very important for binary (spiking) neurons (Schrauwen et al., 2008).

2Sometimes, Wr
r is rescaled such that few eigenvalues are situated slightly

above the unity circle, which can offer better performance in some tasks.
3The Echo State Property states conditions for the ESN principle to work. It

can be understood as having a reservoir with fading memory which asymptoti-
cally washes out any information from initial conditions.

4The spectral radius ρ(Wr
r) is the largest absolute eigenvalue of the reservoir

connection matrix Wr
r.
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However, using the maximal singular value to rescale the reser-
voir connection matrix usually does not provide rich reservoir dy-
namics. An alternative is to rescale Wr

r such that its spectral radius
ρ(Wr

r) < 1 (Jaeger, 2001). Although it does not guarantee the ESP,
it has been empirically observed that this criterium works well and
often produces analog sigmoid ESNs with ESP for any input, pro-
ducing richer reservoirs which contain signals with multiple frequen-
cies. For most applications, the best performance is attained with a
reservoir that operates at the edge of stability, e.g., ρ(Wr

r) = 0.99.

Besides the reservoir weight matrix, the dynamics of the reser-
voir is influenced by several factors: the input scaling υri of Wr

i , an
optional bias, the nonlinearity of the nodes and the external input
driving the reservoir (Verstraeten and Schrauwen, 2009). Consid-
ering a normalized input signal u[n], the effect of input scaling υri
on the reservoir dynamics is such that, the larger the scaling, the
closer to saturation the reservoir states will be, since the reservoir
state is shifted torwards the non-linear area of the tanh activation
function. Spectral radius closer to unity as well as larger input scal-
ing makes the reservoir more non-linear, which has a deterioration
impact on the memory capacity as side-effect (Verstraeten et al.,
2010). Moreover, the larger the input scaling, the further above
unity the spectral radius might be while still attaining the ESP.

The scaling of these non-trainable weights is a parameter which
should be chosen according to the task at hand empirically, analyz-
ing the behavior of the reservoir state over time, or by grid searching
over parameter ranges (see also Section 2.9).

An ESN without output feedback is inherently stable due to the
ESP. However, with nonzero output feedback, stability can not be
always guaranteed. A formal analysis of the stability of the ESN in
this case is challenging. Nevertheless, stabilizing solutions include
the use of regularization techniques such as the addition of state
noise during training (Jaeger, 2002b) (see Section 2.6).

More recently, effective spectral radius (Ozturk et al., 2006) has
been proposed as a dynamical measure of stability for ESNs, which
results from the linearization of the dynamical system around the
current state. Another dynamical measure is the local Lyapunov
exponent introduced in Verstraeten and Schrauwen (2009).
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2.4 Leaky-integrator Units and Timescales

Making the reservoir units leaky integrators offers possibilities for
adjusting the timescale of the reservoir to the temporal dynamics of
the input signal. This can be achieved after discretizing the following
differential equation representing the reservoir in continuous time5

ẋ = 1
c

(−ax + f(Wr
iu + Wr

rx)) , (2.7)

where a is the leaking rate of the units and c is a scaling factor.
Setting a = 1 and using the Euler method, it is possible to get

x((t+ 1)δ) = (1− α)x(tδ) + αf (Wr
rx(tδ) + Wr

iu(tδ)) , (2.8)

where δ is the Euler stepsize and α = δ/c. Assuming the following
change in notation x[n] = x(tδ), from continous to discrete time,
then (2.8) becomes

x[n+ 1] = (1− α)x[n] + αf (Wr
rx[n] + Wr

iu[n]) (2.9)

which is represented schematically in Fig. 2.2(a). The equation
above is equivalent to low-pass filtering of the reservoir states with
a cut-off frequency α/(1−α). Whereas (Jaeger et al., 2007) investi-
gates the parameter a, this work uses α for fine-tuning the temporal
dynamics of the reservoir similarly to Schrauwen et al. (2007). The
advantage of using α over a is that the spectral radius of Wr

r does
not change when α changes.

The loop of the integrator can be put over the nonlinearity, as
shown in Fig. 2.2(b), in which case the reservoir state update equa-
tion is written as follows:

x[n+ 1] = f ((1− α)x[n] + α(Wr
rx[n] + Wr

iu[n])) . (2.10)

This latter form has the advantage of damping the activation of the
reservoir state6 due to placement of the nonlinearity over the loop.

5For the sake of simplicity, output feedback weights Wr
o and bias terms W·

b
are not considered in the equations of leaky integrator units.

6This contracting property tend to shift the reservoir to the linear regime for
small leak rates α (i.e., slow reservoirs), a similar effect achieved by small input
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(b) Integrator over the nonlinearity

Figure 2.2: Reservoir schemes with leaky-integrator units, where the loop of the inte-
grator is positioned after the nonlinearity (a) and over the nonlinearity (b).

Furthermore, it can be implemented without additional overhead,
by redefining the matrices Wr

r and Wr
i :

W̃r
r = αWr

r + (1− α)I, (2.11)
W̃r

i = αWr
i . (2.12)

Then, the reservoir state update equation becomes:

x[n+ 1] = f
(
W̃r

rx[n] + W̃r
iu[n]

)
. (2.13)

There are two ways to increase the memory of a reservoir which
has no output feedback. It is possible to either tune the leak rate α ∈
(0, 1] of the reservoir for matching the timescale of the input signal
or downsample the input signal. Low leak rates yield reservoirs with
more memory which can remember the previous stimuli for longer
time spans. On the other hand, leak rates close to 1 are suitable
for high-frequency input signals which vary in a faster timescale.
Sometimes a combination of reservoir units possessing distinct leak
rates can improve performance (Antonelo et al., 2008a), for example,

scaling.
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when the input signal consists of components operating in distinct
timescales. In this case, if each reservoir unit has its own leak rate,
equations (2.9) and (2.10) becomes respectively:

x[n+ 1] = (1− ~α)� x[n] + ~α� f (Wr
rx[n] + Wr

iu[n]) (2.14)
x[n+ 1] = f ((1− ~α)� x[n] + ~α� (Wr

rx[n] + Wr
iu[n])) , (2.15)

where ~α = [α1α2 · · ·αnr ] is the vector with each unit’s leak rate; and
� is the notation for component-wise multiplication of vectors.

The downsampling rate dt reduces the original input signal to
ns/dt samples, where ns is the total number of samples, generating
a smoothed downsampled input signal7, which has been shown to
have a similar effect to using leak rates in the reservoir (Schrauwen
et al., 2007). The advantage of downsampling the training data over
using leak rates is that it requires less memory, as the data size is
reduced. Sometimes, a combination of downsampling and leak rates
gives the best performance.

Other approaches include the use of band-pass filters in reservoir
units (wyffels et al., 2008) which allow for very specific frequency
sensitivity.

2.5 Readout Output Training

The readout output of the RC network is the only layer to be trained,
usually by standard linear regression methods. For that, the
reservoir is driven by an input sequence u(1), . . . ,u(ns) which yields
a sequence of extended reservoir states z(1), . . . , z(ns) using (2.1).

The desired teacher outputs ŷ[n] are collected row-wise into a
matrix Ŷ. The generated extended states are collected row-wise
into a matrix X of size ns × (nr + ni + 1) if no output feedback is
used. If the output is fed back to the reservoir via nonzero Wr

o, then
X has size ns× (nr + ni + no + 1) and, during the generation of the
extended states z(ns), the desired output values ŷ[n] are written into

7The downsampling in this thesis is accomplished using the resample function
in Matlab, which applies an anti-aliasing (lowpass) FIR filter to the input during
the resampling process. This function is always used unless otherwise stated.
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the output units through teacher forcing8. Then the training of the
output layer consists of finding the weights Wout which minimizes
the sum of squared errors

ns∑
t=1

(ŷ[n]− y[n])2 , (2.16)

by applying the Wiener-Hopf solution (or Linear Least Squares):

Wout = (X>X)−1X>Ŷ (2.17)

where ns denotes the total number of training samples and the initial
state is x(0) = 0. Note that the other matrices (Wr

r,Wr
i ,Wr

b,Wr
o)

are not trained at all.
It is important to note that there is an initial transient during

the generation of reservoir states x[n] using (2.1) due to the fading
memory of the reservoir, which may be undesired for the readout
training. So, the usual procedure to deal with this is to disregard
the first nwd samples in a process called warm-up drop so that
only the samples z[n], n = nwd, nwd + 1, ..., ns are collected into the
matrix X. Although this procedure is always used in this work, the
notation for the generation of reservoir states will not change for the
sake of simplicity.

The learning of the RC network is a fast process without local
minima. Once trained, the resulting RC-based system can be used
for real-time operation on moderate hardware since the computa-
tions are very fast (only matrix multiplications of small matrices).

2.6 Regularization

In order to avoid over-fitting, a regularization term λ can be added
to the error function in (2.16) (Bishop, 2006) which will keep the

8Teacher forcing is a procedure which feeds the target output signal to the
reservoir (via the output units) instead of the actual network output. This is
done during training when feedback connections from the output to the reservoir
exist, but can also be used after training.
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weights small by penalizing weight vectors with a great norm:

1
2

∥∥∥ŷ−wT
o X

∥∥∥2

2
+ λ

2
‖wo‖22 , (2.18)

where z[n] is the extended harvested reservoir state as in (2.4); X is
the row-wise collection of vectors z[n]; and wo is the weight vector
of one output unit y. Setting the gradient with respect to wo of the
above expression to zero, one obtains:

W̃out = (X>X + λI)−1X>Ŷ (2.19)

where W̃out is the column-wise concatenation of Wo
r , Wo

i , Wo
o

(without the bias term Wo
b). This method is called Ridge Regres-

sion in statistics (Bishop, 2006), Regularized Linear Least Squares
or Tikhonov regularization (Tychonoff and Arsenin, 1977). A second
form of regularization is to add white noise to the state update
equation during the generation of matrix X with the extended
reservoir states z[n] (Jaeger, 2002a). In this case, (2.1) becomes
during training:

x[n+ 1] = f (Wr
rx[n] + Wr

iu[n] + Wr
oy[n] + Wr

b) + ν[n], (2.20)

where ν[n] is a noise vector, where the noise variance σ2
ν is a pa-

rameter to be tuned. The noise injection term ν[n] may sometimes
appear inside the nonlinearity f .

Both forms of regularization require the optimization of the pa-
rameters λ or σ2

ν so that the test error is minimum. This is usually
done using cross-validation.

2.7 Classification and Fisher relabeling

Not only regression tasks, but also classification problems can be
handled with reservoir computing networks. As the temporal aspect
is inherent to RC networks, they can be used for dynamic pattern
recognition (Jaeger, 2002a), where the patterns to be detected are
extended over a short time interval.

In this work, multi-label classification is often used, for in-
stance, in event and location detection for mobile robots (see Chap-
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ter 4), where a temporally extended input pattern (distance sensor
readings) can be classified as belonging to one class among several
possible ones (events or robot locations).

The classification task is defined as follows. Let y[n] be the no-
dimensional output vector of the RC network, where no is also the
number of patterns to be detected. In an one-versus-all classifier, the
desired output ŷ[n] is built over time such that, for each timestep,
only one dimension is +1 whereas the others are −1, i.e., ŷ[n] =
(−1,−1, · · · , 1, · · · ,−1)1×no . This can be extended to a situation
where no pattern is detected by setting all components of the desired
output to −1, that is, ŷ[n] = (−1,−1, · · · ,−1)1×no . Then, the
desired output vector ŷ[n] is collected row-wise into a matrix Ŷns×no
for n = 1, 2, · · · , ns. Training proceeds as described in Section 2.5 or
Section 2.6 using the regularized least squares. After finding Wout,
in the test phase, the network output y[n] is post-processed by a
winner-takes-all activation function:

g(yi[n]) =
{

+1, if yi[n] > yj [n], ∀j 6= i

−1, otherwise
(2.21)

and in the case where patterns can be absent for any given time in-
terval (i.e., event detection), the post-processing function becomes:

g(yi[n]) =
{

+1, if yi[n] > θ and yi[n] > yj [n], ∀j 6= i

−1, otherwise
(2.22)

where θ is a given threshold constant.

It is very common that datasets are unbalanced regarding the
number of samples of each class. These class inequalities negatively
influence the linear regression training. While it may be undoable
to modify the underlying sampling mechanism, it is possible to re-
balance the original dataset by relabeling the teacher output
yi[n] of ith class as follows.

Let
Pi = |{yi[n] | yi[n] = +1, n = 1, · · · , ns}|

be the number of samples of class i with +1 output label and

Ni = |{yi[n] | yi[n] = −1, n = 1, · · · , ns}|
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the number of samples of class i with −1 output label. Then, the
desired output for each class i for all samples n = 1, 2, · · · , ns are
relabeled as follows:

ŷnew
i [n] =

{
Pi+Ni
Pi

if ŷi[n] = +1
−Pi+Ni

Ni
if ŷi[n] = −1

. (2.23)

And for tasks like event detection where patterns may be absent
for a given time interval, that is, ∃n, ∀i : yi[n] = −1:

ŷnew
i [n] =


∑

k
Pk

Pi
if ŷi[n] = +1

−
∑

k
Pk∑

k 6=i Pk
if ŷi[n] = −1

. (2.24)

This re-weighting of categorical labels for the least squares train-
ing is known as Fisher relabeling (Duda et al., 2001). It effectively
corrects the undesired shift of the classification hyperplane given by
the linear regression due to the unbalanced dataset.

2.8 Error Measures

For regression tasks, the Normalized Mean Square Error (NMSE)
is used as a performance measure and is defined as:

NMSE = 〈(ŷ[n]− y[n])2〉
σ2
ŷ[n]

, (2.25)

where the numerator is the mean squared error of the output y[n]
and the denominator is the variance of desired output ŷ[n].

In multi-label classification problems such as robot location
detection, the performance is measured by the mean classification
rate:

CR = |P |
ns

(2.26)

where P = {y[n]|n = 1, 2, · · · , ns and y[n] = ŷ[n]} is the set con-
taining all correctly classified label samples.

In problems where for a long time no dynamic pattern is present,
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like in event detection during robot navigation, it is interesting to
also measure the performance rate (true positives rate) for each class
or event i:

TPi = |Ai|
|Bi|

(2.27)

where

Ai = {ŷi[n]|(ŷi[n] = +1) ∧ (yi[n] = ŷi[n]]), n = 1, 2, · · · , ns}

is the set of correctly classified samples of class i and

Bi = {ŷi[n]|(ŷi[n] = +1), n = 1, 2, · · · , ns}

is the set of samples with class i.

2.9 Parameter Tuning

Some parameters of the ESN model do not require tuning, while oth-
ers require optimization to get improved classification or regression
performance on a test set.

Reservoir size nr refers to the model capacity. Test performance
increases asymptotically with the reservoir size if a regulariza-
tion method is used. Larger reservoirs can solve more complex
modeling problems which require richer nonlinear transforma-
tions of the input as well as provide longer-term fading memory
to hold past inputs.

Spectral radius ρ(Wr
r) Typically setting the reservoir at the edge

of stability, i.e., ρ(Wr
r) = 0.99 works very well for most scenar-

ios. To achieve a more linear reservoir and, consequently, more
memory capacity, a smaller spectral radius could be used.

Connectivity c·· The connectivity between neurons in the reservoir
and from input and output to reservoir is of less importance,
as it does not affect performance for analog reservoirs such as
an ESN (not the case for spiking networks) (Buesing et al.,
2010).
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Leak rate α is a parameter which needs tuning. The assumption is
that the timescale in the reservoir should match the timescale
of the task being modeled and, for that, the leak rate can be
adjusted for optimal timescale matching.

Input downsampling dt should be optimized for the same rea-
sons as the leak rate. Sometimes, input upsampling may be
desired for generating a longer input signal.

Input scaling υri also changes the reservoir dynamics and conse-
quently the task performance. Input signals with a high am-
plitude will saturate the reservoir states, shifting the reservoir
state to the non-linear regime of the tanh activation function
f . Whereas this makes the reservoir more non-linear, it has
a deterioration impact on the memory capacity (Verstraeten
et al., 2010).

Output feedback scaling υro should be optimized for the genera-
tion task. This can cause dynamical instability since the ESP
does not hold anymore when output feedback is used. Regu-
larization should be used as way to stabilize the ESN.

Regularization parameter λ and noise variance σ2
ν If a non-

regularized Least Squares method is used for training the read-
out, then the reservoir size should be optimized once a rela-
tively big reservoir is subject to over-fitting. On the other
hand, if Ridge Regression or state noise injection is used, the
regularization parameter λ or the noise variance σ2

ν must
be optimized. With proper regularization, performance im-
proves asymptotically with the reservoir size.

These parameters, except for the first three, are usually opti-
mized via grid-search with k-fold cross-validation. Other al-
ternatives are to individually optimize the parameters with k-fold
cross-validation or empirically hand-tune the parameters. In the
former case, if one parameter affects the other, i.e., if they are
inter-dependent, the solution is not optimal. Nevertheless, RC-
based systems are somewhat robust to a diverse set of parameter
ranges, including the random generation of matrices Wr

· (however,
the rescaling of these matrices is important).



48 2. Reservoir Computing

Table 2.2: Tips for Reservoir Design and Training

Parameter Description Suggested range/value

cri Input connection fraction [0.05, 0.5]
υri Input scaling optimize
dt Input downsampling optimize

crb Bias connection fraction [0.05, 0.5]
υrb Bias scaling optimize

nr Reservoir size (the larger, the better)
crr Reservoir connection fraction [0.01,1] (default to 1)
ρ(Wr

r) Spectral radius 0.99 (could be optimized)
α Leak rate optimize

cro Output feedback connection frac-
tion

[0.05,0.5]

υro Output feedback scaling optimize

σ2
ν Variance for state noise injection optimize
λ Regularization parameter optimize

Table 2.2 shows a list of parameters related to reservoir design
and training with corresponding suggested values or ranges. Opti-
mize means that the parameter can be found by trial and error or
by some automated method.

Although it is suggested that many parameters should be op-
timized, RC is quite robust to several of these parameters. Thus,
it is relevant to mention the three most important parameters for
tuning: leak rate (or, alternatively, resampling rate of the input
signal), input scaling, and the regularization parameter (or,
alternatively, variance for state noise). The other parameters are
less important.

2.10 Conclusion

In this chapter, a detailed description of the Echo State Network
model has been given. As the recurrent part of the network, i.e.,
the reservoir, is not trained, but only a readout output layer by
standard linear regression methods, it constitutes an efficient model
for recurrent network training. It overcomes the known convergence
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problems, issues with vanishing gradients, and bifurcations existent
in previous methods such as back-propagation through time. It was
also shown that the reservoir can have its temporal dynamics tuned
by making the units leaky-integrators, which is equivalent to low-
pass filtering of the reservoir state.

Furthermore, the dynamic regime of the reservoir should be sit-
uated at the edge of stability so that interesting, rich dynamical
reservoir activity is achieved. For that, the spectral radius of the
connection matrix for the recurrent reservoir, the input scaling, and
an optional bias are the main parameters which influence the dy-
namical behavior of the reservoir and should be tuned according to
the task at hand.

Supervised training methods such as Least Squares and Ridge
Regression were presented and classification with ESNs has been
described. Additionally, error or performance measures for regres-
sion and classification tasks as well as parameter optimization issues
have been presented in this chapter.





3
Supervised Learning of

Navigation Behaviors

The first approach for modeling autonomous navigation systems for
small mobile robots in this thesis is by supervised learning of robust
reactive behaviors. By taking this approach, learning is accom-
plished by generating examples of the desired sensory-motor cou-
pling using a supervisor.

3.1 Introduction

This chapter aims at automating the programming of simple reactive
behaviors for small mobile robots such as the iRobot family of do-
mestic products, which possess inexpensive sensory apparatus and
represent a large potential market in the field of service robotics. To
achieve that, a human instructor would show to the robot how to
execute tasks, for instance, by giving examples of movements, be-
haviors or trajectories to be followed. The main idea is that a mobile
robot should learn and generalize what it has learned according to
a supervised learning process.

While similar work uses backpropagation through time (BPTT)
to train RNNs for robot navigation problems (Tani, 1996; Tani and
Nolfi, 1999) and for generating movements in a robotic arm (Tani,
2003), in this chapter Reservoir Computing (RC) networks are used
as an efficient way for learning navigation behaviors by demonstra-
tion (e.g., with examples). The goal is to model a set of differ-
ent sensory-motor couplings (or behaviors) using a single dynamical
reservoir so that behaviors are represented in a distributed way in
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the network. After the learning process, the coupling of the dynam-
ical system (reservoir), which controls the robot, and the environ-
ment allows that the robot becomes situated in its environment since
the internal state of the reservoir reflects the contextual state of the
environment. This results from the direct relationship between the
navigation behavior in the environment space (e.g., given by the
robot trajectory) and the corresponding sub-space attractor in the
dynamical system space, as it will be seen later in this chapter.

The first experiment deals with learning multiple conflicting be-
haviors, originated from different supervisor controllers, which can
be switched by changing the operating point of the dynamical reser-
voir using an extra binary input channel (or vector, for more than
two behaviors). It is shown that the RC network can model two
navigation attractors and it is able to generalize these behaviors to
bigger environments. The second experiment tackles partially ob-
servable tasks such as the T-maze task, which consists of a robot
in a T-shaped environment that must reach the correct goal (left or
right arm of the T-maze) depending on a previously received input
sign. It is a control task in which the delay period between the
sign received and the required response (e.g., turn right or left) is
a crucial factor. Delayed response tasks like this one form a tem-
poral problem that can be handled very well by RC networks, but
considering a limited delay due to the reservoir’s fading memory in
networks with no output feedback.

3.2 Modeling Multiple Navigation Behaviors

In this section, two different nonlinear navigation behaviors are mod-
eled by a single reservoir computing network which embeds these
behaviors in sub-space attractors in the dynamical system space.
An extra input channel to the network selects one of the navigation
attractors, by shifting the operation point of the recurrent network
into different sub-spaces. The behaviors are learned in an initial
environment based on trajectories given by different teacher con-
trollers, and are successfully used in a test environment not seen
during training.



3.2. Modeling Multiple Navigation Behaviors 53

3.2.1 SINAR Robot Model

The following experiments are based on a robot model that is part
of the 2D SINAR simulator (Antonelo et al., 2006) (this section is
also presented in Appendix B. Its simulation environment generates
the data necessary for training the RC networks. In SINAR, the
mobile robot (Fig. 3.1) interacts with the environment by distance
and color sensors; and by one actuator which controls the movement
direction (turning). The environment of the robot is composed of
several objects, each one of a particular color. Particularly, obsta-
cles are represented by blue objects whereas targets are given by
yellow objects. The robot model has 17 sensor positions distributed
uniformly over the front of the robot, from -90◦ to +90◦. Each po-
sition holds two virtual sensors for distance and color perception.
The distance sensors are limited in range such that they saturate
for distances greater than 300 distance units (d.u.), and are noisy
- they exhibit Gaussian noise N(0, 0.01) on their readings. A value
of 0 means near some object and a value of 1 means far or nothing
detected. At each iteration the robot is able to execute a direction
adjustment to the left or to the right in the range [0, 15] degrees
and the speed is equal to 0.28 distance units (d.u.)/s (summary in
Table 3.1).

SINAR Controller

The controller for the SINAR robot model (based on Antonelo et al.
(2006)) is a complex intelligent navigation system composed of hi-
erarchical neural networks which learn by classical reinforcement
learning algorithms. The system learns to seek targets and avoid
obstacles as the robot interacts with the environment, by colliding
against obstacles and by capturing targets in the environment. It
also learns to distinguish targets and obstacles by associating their
distinct colors to attraction or repulsion behaviors (see Antonelo
et al. (2005, 2006)). From now on, the controllers obtained from
this model will be called INASY (Intelligent autonomous NAvigation
SYstem). It is relevant to say that other controllers or supervisors
could be used to generate training data or even possibly manually
controlled data.
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Figure 3.1: SINAR robot model.

Table 3.1: SINAR robot model

No. Dist. Sensors 17
No. Color Sensors 17
Range of Dist. Sens. 300d.u.
Noise on sensors N(0, 3d.u.)
Speed 0.28d.u./timestep

3.2.2 Training the Reservoir Architecture with Examples

The INASY controllers, described in the previous section, are teacher
controllers responsible for providing examples of navigation trajec-
tories to a RC-based robot controller which will be called RECNA
(REservoir Computing NAvigation system) from now on.

The samples generated by INASY controllers containing data
from distance and color sensors, and from actuators are used to
train the RECNA controller in a Matlab environment using the RCT
Toolbox1 (Verstraeten et al., 2007). The experimental setup is given
in the following section.

The supervised learning process uses training data from two dif-
ferent teacher INASY controllers. Consider that the data such as
robot sensors and actuators obtained from both controllers are con-
catenated into a single dataset and that the total number of time
samples is ns. Then, training is performed using linear regression on
the reservoir states as described in Section 2.5. Fig. 3.2 shows the
data samples generated by different behaviors or teacher controllers,

1This is an open-source Matlab toolbox for Reservoir Computing which is
freely available at http://www.elis.ugent.be/rct
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Figure 3.2: Training a single RC network for learning 2 different behaviors.
Behaviors 1 and 2 are generated by distinct teacher controllers. The input u is
the concatenation of the sensors and an extra input channel (0 or 1) for behavior
selection.

which are used to train a single RC network that possess an extra
input channel for behavior selection.

The supervised learning procedure can be summarized in four
stages:

• First, the teacher INASY controllers navigate in a particular
environment, e.g., avoid obstacles and/or seek targets.

• In a second stage, data samples with the observed sensory-
motor couplings are collected from the INASY controllers dur-
ing a robot run of a specific duration.

• If there are multiple behaviors possibly from different con-
trollers, the third stage concatenates the data collected in the
previous stage, and adds extra binary input channel(s) for be-
havior selection (where each possible binary value could corre-
spond to a behavior, e.g., 01, 10, and 11 encode three different
behaviors).

• The fourth stage corresponds to training the RECNA con-
troller with the data collected in the second stage and con-
catenated in the third stage by supervised learning methods
such as linear regression (Section 2.5).
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(a) S1 (b) S2

Figure 3.3: Environments used for the experiments in this section. Initially, both
targets are visible. After the robot captures one target, the other target is put back to
its original location, making at least one target always visible. (a) Small environment
with two targets and one robot. (b) Big environment with two targets and a robot.

3.2.3 Experiments

In this section, an RC network is trained to reproduce the following
combined robot behaviors: Environment Exploration (EE) and
Target Seeking (TS). The EE behavior makes the robot explore
the environment but ignoring the targets, while the TS behavior
makes the robot seek and capture targets in the environment as
well as avoid obstacles.

The environments used for the experiments are shown in Fig. 3.3.
The first environment is composed of a (blue) corridor with two (yel-
low) targets (the targets are striped in the figure for clarification).
During simulation, the robot navigates through the environment
normally performing cyclic trajectories. Captured targets are se-
quentially put back in the same locations after a capture2. Fig. 3.4
shows examples of navigation trajectories.

As EE and TS behaviors are conflicting behaviors, they must
be generated by different INASY controllers. In the following, it is
explained how these controllers are constructed using the intelligent
navigation system described in Antonelo et al. (2006).

EE exploratory behavior The INASY controller which imple-
ments the EE behavior is trained to avoid blue objects (obsta-
cles) and yellow objects (targets). An example of exploratory
behavior which ignores targets is given in Fig. 3.4(a).

2A target capture causes the removal of the respective target from the envi-
ronment.
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Figure 3.4: Example of navigation trajectories of teacher INASY controllers in
environment S1. (a) EE exploratory behavior (ignores visible targets). (b) TS
target seeking behavior (continually captures targets).

TS target seeking behavior The INASY controller that gener-
ates the TS behavior is trained to avoid blue objects (obsta-
cles) and to seek yellow objects (targets). The resulting target
seeking behavior is shown in Fig. 3.4(b).

Next, the samples with sensory and actuator information are
collected from INASY controllers in two stages. In the first stage,
the controller implementing EE behavior steers the robot in envi-
ronment S1 from Fig. 3.3, exploring the environment and ignoring
targets. All sensory inputs and actuators are recorded. In the sec-
ond stage, the controller with TS behavior steers the robot in the
same environment, but now generating a different trajectory towards
the targets. Each stage lasts 22.500 timesteps, summing up 45.000
timesteps in total which corresponds approximately to 24 cyclic tra-
jectories or loops in the respective environment.

After collecting the training data which represent EE and TS
behaviors individually, a single RC network is trained to reproduce
both behaviors by means of concatenation of the training data as
well as of an extra input channel added for behavior selection, as
described in previous section and in Fig. 3.2. If this extra input has
value zero (one), then the EE (TS) behavior is selected.

3.2.4 Settings

The parameter configuration for the RC network of the RECNA
controller is shown in Table 3.2. The inputs to the network are 17
distance sensors, 17 color sensors, plus 1 input for behavior selection,
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Table 3.2: Parameter configuration for RECNA controller

Number of input channels ni = 35
Input connection fraction cri = 0.2
Input scaling υri = 0.2
Input downsampling dt = 1
Input to output connections yes

Bias connection fraction crb = 0.2
Bias scaling υrb = 0.2

Reservoir size nr = 600
Reservoir connection fraction crr = 1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 1

Number of output channels no = 1
Output feedback to reservoir no

summing up ni = 35 inputs. The reservoir size is nr = 600 neurons.
The output unit corresponds to the turning or direction adjustment
robot actuator (the robot has constant velocity). The training is
done according to Section 2.5 using the collected data of 45.000
timesteps, of which half of the observations has the value of the
extra input channel set to 0 for EE behavior, and the other half has
this value set to 1 for TS behavior.

3.2.5 Results

After learning in environment S1, the RECNA controller was evalu-
ated in environments S1 and S2. The results for environment S1 are
shown in Fig. 3.5. The simulation takes 20.000 timesteps. At each
period of 5.000 timesteps, a behavior switching event takes place.
Note that every switching implies a waiting time of 15 timesteps dur-
ing which the robot is kept still so that a short reservoir transient
is disregarded. After this switching interval, the reservoir is ready
to drive the robot according to the selected behavior. Fig. 3.5(a)
shows the coordinates of the robot during the run, where vertical
lines represent the moments in which a behavior switching occurs.
It can be seen that the behaviors are very well defined in their re-
spective time interval. The trajectory of the robot changes as soon
as the switching occurs and a target is localized. Fig. 3.5(b) shows
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the corresponding robot trajectory in a 2D map during the simula-
tion. The black (gray) trajectory corresponds to the time interval
in which the EE (TS) behavior is selected.

From these figures, it can be observed that the trajectories form
navigation attractors in the environment. In addition, switching
between these attractors is accomplished smoothly by the RECNA
controller without collisions to obstacles.

Fig. 3.6 shows six randomly selected states from the reservoir
over time as the RECNA controller drives the robot in environment
S1. It is possible to observe that the dynamics of the reservoir
changes at each moment of behavior switching given by the vertical
lines in the figure. By reducing the high-dimensional state space of
the dynamical reservoir, using Principal Component Analysis (PCA)
on the reservoir states, it is possible to observe that sub-space at-
tractors which are linearly separable (Fig. 3.7). By only changing
an input from 0 to 1 or vice-versa, the operating point of the dy-
namical reservoir is changed to a different sub-space attractor in
the dynamical system space, defined by the tight coupling between
robot controller and environment, as introduced in Chapter 1.

Table 3.3 shows results for different number of neurons (nr) in
the reservoir. Each row shows the mean values of the: training
NMSE error (defined in (2.25)), training time, number of target
captures and number of collisions, considering 5 robot runs each of
20.000 timesteps and with a different randomly generated reservoir
Wr

r. The training time includes the time to generate the matrix
X and to compute (2.17) using an Intel Core2 Duo processor-based
system. During a robot run, there are three switching events as
in Fig. 3.5. The last column of the table presents the percentage
of successful runs which have resulted in correctly performing the
selected behaviors for all three events of behavior switching during
the respective simulation. It can be observed that as the reservoir
has more units, the performance of the resulting RECNA controller
increases, e.g., by decreasing the number of collisions, although the
training time also increases. For reservoirs containing more than 400
neurons, the resulting RC-based controllers are always stable, i.e.,
the selected task (EE or TS) is performed reliably. With a proper
initialization of the reservoir weights, even small reservoirs with 100
units can perform these navigation tasks very well. As this small
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Figure 3.5: Results for environment S1. (a) The coordinates of the robot are shown for
20.000 timesteps during the test phase. The solid and dashed lines are the x and y coordi-
nates, respectively. Vertical gray lines represent the moments of behavior switching. (b)
The corresponding trajectory of the robot in the Cartesian map. The solid black (gray)
line represents the timesteps in which the selected behavior is the EE (TS) behavior.
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Figure 3.6: Reservoir states for the RECNA controller in environment S1. The plot
shows six randomly chosen states from the reservoir. Vertical lines represent the moments
in which the behavior switches.
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Figure 3.7: Three principal components of the reduced dynamical system state
space after applying PCA on the reservoir states during testing with the RECNA
controller in environment S1. Gray and black lines represent trajectories associ-
ated with different selected behaviors. The input channel for behavior selection
effectively shifts the operating point of the reservoir state space into different
linearly separable sub-space attractors. There are three switching events, rep-
resented by the lines connecting both sub-space attractors, as in Fig. 3.6. This
figure is analogous to the fictitious example of Fig. 1.11.
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Table 3.3: Mean results for different size of reservoirs - Environment S1

No. Neurons Training Training No. Target No. Correct
(nr) NMSE Time (s) Captures Collisions behavior

100 0.88 5 12 20.6 40 %
200 0.85 9 12.2 11 80 %
400 0.82 25 11.8 0.8 100 %
600 0.80 60 12.6 0.6 100 %

reservoir must be randomly generated, this proper initialization is
obtained by generating reservoirs and testing the resulting controller
until one solves the required task3.

In order to test the generalization capabilities of the RECNA
controller, a new environment S2 is considered which is different
from the training environment (S1). The new environment (Fig.
3.3) is larger than S1, and has two targets, one located in the lower-
left of the environment and another in the upper-right of the envi-
ronment. The results in Fig. 3.8 show that the RECNA controller
generalizes very well, being able to explore the environment when
EE behavior is selected as well as to capture targets when TS be-
havior is chosen.

It is also interesting to compare the output of the teacher INASY
controller with the output of the RECNA imitator controller. Fig.
3.9 shows that the output of the RC network is much less noisy than
the output of the teacher controller, which yields a conclusion that
the RC network stabilizes the sensory-motor coupling while disre-
garding the noisy superfluous signals from the teacher controller.
The resulting signal smoothing is probably due to the fading mem-
ory property of reservoirs. In (Antonelo et al., 2008b), it is shown
that RECNA controllers produce more stable behaviors than their
teacher controllers. Experiments not shown in this work indicate
that the trained RC-based controller is robust against noise and
perturbations such as artificially pushing the robot around the en-
vironment in real time.

As a matter of comparison, instead of using RC networks, feed-
forward networks such as the Multi-Layer Perceptrons (MLP) have

3On average, smaller randomly generated reservoirs have a lower probability
of achieving a good performance and stable behavior than large reservoirs.
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Figure 3.8: Results for generalization capabilities in environment S2. (a) The
coordinates of the robot are shown for 20.000 timesteps during the testing. The
solid and dashed lines are the x and y coordinates, respectively. Vertical gray
lines represent the moment of behavior switching. (b) The corresponding tra-
jectory of the robot in the Cartesian map. The solid black (gray) line represents
the timesteps in which the selected behavior is the EE (TS) behavior.

also been used to model multiple robot behaviors using supervised
learning. The MLP4 was trained using the back-propagation algo-
rithm to reproduce the same EE and TS behaviors given in Fig. 3.4.
Although a different number of hidden layers have been tried, the
MLP failed in all of them to drive the robot stably and safely (it
constantly made the robot bump to the walls). Thus, memoryless
architectures are not able to correctly model multiple behaviors and
coordinate their switching.

4The experiment with the MLP does not use a time-window approach, making
it a memoryless system.
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Figure 3.9: Outputs (turning actuators) of controllers for EE behavior during 3.000
timesteps. (a) Output from INASY controller. (b) Output from RECNA (the RC-based)
controller.

3.3 Delayed Response Task: The T-maze

The road sign problem, which is tackled in this section, constitutes
a particular temporal task which is defined in (Ulbricht, 1996). In
this problem, an artificial agent (robot) which is driving along a
corridor receives a temporary sign that must be remembered for fu-
ture correct decision making. The T-maze task is the most common
form of such problem: the robot drives in an environment whose
shape resembles the letter T (see Fig. 3.11). The robot’s task is to
drive from the initial position located at the bottom of the longest
corridor, reach the T-junction and then turn to the correct goal (left
or right). The correct turning decision at the T-junction depends
on the previous input sign received while driving along the corridor
(usually a sign at the left/right side of the corridor indicates that
the goal is at the left/right arm of the T-maze).

Several systems designed to solve such tasks represent the robot’s
environment as a discrete world (Bakker, 2002) in order to facilitate
the learning of the task. Sometimes the world’s representation is not
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discrete, but instead some models are designed with event extraction
mechanisms which produce abstract signals from the robot sensory
cues to the control module (Linaker and Jacobsson, 2001). Recent
work has tackled the road sign problem with a continuous world rep-
resentation (Rylatt and Czarnecki, 2000; Ziemke and Thieme, 2002;
Kim, 2004). Most approaches to the road sign problem are based
on recurrent neural networks (Ulbricht, 1996; Rylatt and Czarnecki,
2000; Ziemke and Thieme, 2002). The work in Ziemke and Thieme
(2002) is based on neuromodulation of synaptic weights in higher-
order Recurrent Neural Networks (RNNs) to solve the T-maze task.
This means that the sensory-motor mapping (synapses) can be mod-
ified while the robot is navigating as a mechanism of short-term
memory. This synaptic plasticity is evolved by a standard genetic
algorithm. However, for simple T-mazes the resulting controller be-
comes purely reactive and follows the left wall as soon as the light
sign appears at the left side, in contrast to the current work which
does not yield wall following behaviors.

In Kim (2004), evolutionary multi-objective optimization is used
to evolve finite state controllers in the T-maze task, whose control
task is simplified by forcing the robot to first reach the T-junction.
In that work, a detailed analysis of the required internal memory
for the T-maze task is accomplished.

Reinforcement learning with Long Short-Term Memory (LSTM)
is the approach used in Bakker (2002) to solve non-Markovian tasks
with long-term dependencies between relevant events such as the
T-maze task. A specific gated RNN architecture is used to approxi-
mate the value function of a reinforcement learning algorithm. The
environment of the agent is discrete, made up of connected squares,
and it can execute one out of 4 actions: move North, East, South
or West.

This section uses Reservoir Computing as an efficient tool for
training robot controllers to solve the T-maze task. The main ad-
vantages of this approach are threefold: simplicity of the black-box
modeling method; efficient and fast training of RC-based controllers;
and integration of reactive and sequential behavior in a single con-
trol module. The latter implies that the RC network will learn
two different types of competences: reactive and deliberative. The
reactive part is given by robot navigation with collision avoidance
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Figure 3.10: Robot models for the T-maze task.

abilities while the deliberative part corresponds to the sequential
task of reaching the T-junction and turning to the correct goal de-
pending on the previous cue received. It will be shown that such
temporal control tasks are well modeled with RC networks.

3.3.1 Robot Model

The simulation of the road sign problem in the form of a T-maze
task is accomplished using the SINAR simulation environment. The
SINAR robot model is described in Section 3.2.1 and shown in
Fig. 3.1 (or in the Appendix B.1). For the following experiments,
obstacles are represented by blue objects whereas the light sign in
the T-maze is simulated by a red object. Furthermore, the robot
model has either 3 or 7 sensor positions (see Fig. 3.10), and the
speed is limited to [0, 17] distance units (d.u.).

3.3.2 Experiments

The environments used for the experiments are shown in Fig. 3.11.
The task of the robot is to drive from the initial position until the
T-junction and then turn left/right if the sign previously appeared
at the left/right side of the longest corridor. Environment B has a
two times longer corridor than environment A. With that, one can
observe how the task is solved when a longer delay between the cue
(light sign) and the subsequent response (turning) is required.

The experiments are divided in three stages: acquisition of the
training dataset; training the RC-based robot controller;
and testing of the resulting robot controllers. These three
steps are executed for each environment, i.e., a controller trained
with data from environment A is only tested in the same environ-
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ment. The first stage consists of using the robot simulator to
generate a training dataset with examples of navigation trajectories
in the respective environment. These training samples, containing
the robot’s sensory inputs and actuators, are recorded by driving
the robot through the T-maze using a simple set of rules, e.g., go
from the initial position until the T-junction, then turn slowly to the
left arm if the light sign was at the left side previously. The dashed
line in Fig. 3.12(a) represents an example of a trajectory gener-
ated by such algorithm. Around 50 examples are collected for the
training dataset which considers starting robot positions randomly
chosen in the interval [-10,10] d.u. for X and Y coordinates as well as
initial robot headings randomly generated from the interval [-15,15]
degrees.

After data acquisition, the second stage consists of training
the RC network using the previous collected examples, containing
the sensory-motor pairs. The last stage corresponds to testing the
RC-based controller in the T-maze5.

The average number of timesteps for the realization of the T-
maze task by the algorithm which generates the training dataset
is 26.3 timesteps for environment A (standard deviation of 1.6) and
34.9 timesteps for environment B (standard deviation of 1.5). In the
testing stage, the T-maze task has to be accomplished in 38 and 46
timesteps for environments A and B, respectively (this was arbitrar-
ily set). These settings do not include the first 20 timesteps in the
data acquisition stage as well as in the testing phase, during which
the robot stays still, which are used to warm up the reservoir and
are discarded in the training of the readout layer due to a transient
response of the reservoir (which has initial state x(t) = 0).

At each timestep, Gaussian noise is added to the robot’s actua-
tors from the distributions N(0, 2) for the robot turning (in degrees)
and from N(0, 0.5) for the robot speed (in d.u.). This noise on ac-
tuators is considered in the data acquisition stage as well as in the
testing stage.

The sensory input in the training observations are 5% noisy, that
is, Gaussian noise from N(0, 0.05) is added to distance and color

5The testing stage is based on the real-time communication between the Mat-
lab process implementing the RC network and the robot simulator (implemented
by TCP/IP sockets).
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Figure 3.11: Environments used for the experiments. The robot only sees 1 sign at a
time. A sign at the left (right) indicates that the goal is at the left arm, in G1 (right
arm, in G2).

sensors (which means N(0, 15) in distance units), whereas (Rylatt
and Czarnecki, 2000) only considers noise-free data for a particular
version of the road sign problem solved with Elman networks. The
testing stage considers either 1% or 5% Gaussian noise on the robot
sensors (this will be stated accordingly in the text).

3.3.3 Settings

The reservoir configuration shown in Table 3.4 is used for all ex-
periments in this section. The inputs to the network are distance
and color sensors totaling either 6 inputs (if the robot model has
3 distance sensors and 3 color sensors) or 14 inputs (if the robot
model has 7 distance sensors and 7 color sensors). The reservoir
is composed of 500 sigmoidal nodes. The readout layer has 2 out-
put units which correspond to the robot actuators of turning (or
direction adjustment) and speed (distance traveled per timestep).

3.3.4 Results

In this section, it is investigated how the number of sensors in the
robot model and the noise level on the sensory readings affect the
performance of the RC-based controller on the T-maze task. This
analysis is made for both environments A and B.

An example of the robot’s trajectory in the T-maze of environ-
ment A is shown in Fig. 3.12(a). The solid line which connects
the robot positions at each timestep represents the trajectory of
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Table 3.4: Parameter configuration for the T-maze task

Number of input channels n1
i = 6, n2

i = 14
Input connection fraction cri = 0.2
Input scaling υri = 0.1
Input downsampling dt = 1
Input to output connections yes

No bias

Reservoir size nr = 500
Reservoir connection fraction crr = 1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 1

Number of output channels no = 2
Output feedback to reservoir no

the robot driven by the RC network whereas the dashed line which
connects small boxes represents an example of a trajectory used for
training. The corresponding sensory readings and robot actuators
are given in Fig. 3.12(b) and Fig. 3.12(c), respectively.

Fig. 3.12(a) shows that the control task, composed of reactive
and sequential behaviors, is smoothly performed by a single con-
trol module, i.e., the RC network. After training, the RC network
can drive the robot exclusively based on sensor data and can hold
the past information for posterior decision making. The recurrent
pathways in the reservoir yield a fading memory which is crucial for
solving the T-maze task. Traditional feedforward neural networks
are not capable of this (Rylatt and Czarnecki, 2000). Furthermore,
it takes at least 5 timesteps between the last perception of the sign
in the corridor (timestep 9) and the start of the turning movement
(timestep 14) in this small T-maze.

The robot trajectory given by the trained RC network in the
T-maze of environment B is shown in Fig. 3.13. It can be seen
that the time gap between the cue received in the corridor and the
decision making at the T-junction can be even greater, in this case
18 timesteps, while the task is still solved correctly. This capacity
to hold past stimuli is related to the memory capacity of reservoirs
(Jaeger, 2002a), which in turn is influenced, for example, by the size
of the reservoir, non-linearity of the units, the input scaling and the
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Figure 3.12: Plots for the robot trajectory (a), sensory readings (b), and actuators
(c) considering that the sign appears at the left side of the corridor in the T-maze of
environment A. The robot model has 7 distance sensors and 7 color sensors which are
1% noisy. (a) The solid line represents the robot trajectory driven by the RC network in
the testing stage (with duration of 38 timesteps), whereas the dashed line corresponds to
an example of desired trajectory (with duration of 26 timesteps) included in the training
dataset. (b) The corresponding 14 inputs of the RC network (i.e., 7 distance sensors and
7 color sensors readings) in the testing stage for 30 timesteps. (c) The robot’s actuators
given by the output of the RC network as a solid line (for 30 timesteps) and by the
example trajectory as a dashed line (for 26 timesteps).
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Figure 3.13: Plot for robot trajectory driven by the RC network in environment
B. Circles represent the moment in which the robot loses the sight of the sign
and the starting time of the turning movement at the T-junction. This time
gap is 18 timesteps. The robot model has 7 distance sensors and 7 color sensors
which are 1% noisy.

leak rate when reservoir units are leaky integrators.
For evaluating the stability of the preceding results, statistics

are generated for environments A and B, considering different noise
levels on sensory readings (1% or 5%) and distinct robot models
(with 3 or 7 sensors). The mean performance for each combination
is shown in Tables 3.5 and 3.6, and is computed after evaluating
30 times each of 10 randomly generated reservoirs in the T-maze
for that specific combination. Thus, each cell in the table is the
average performance on 300 runs in the T-maze, where the number
of runs are split in half for left and right goals. The performance
is measured by the percentage of successful trajectories. A run is
considered successful if the robot reaches the inner part of the correct
arm of the T-maze at the final timestep. For instance, the trajectory
shown in Fig. 3.13 is considered successful because the last point of
this trajectory has an abscissa which is lower than the abscissa of
the left wall of the main corridor (300d.u.).

From the tables, it can be observed that a robot model with
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Table 3.5: Percentage of correct trajectories for 1% noise on sensors

3 sensors 7 sensors

Left Right Left Right

Environment A 58% 62% 95% 93%
Environment B 37% 33% 82% 81%

Table 3.6: Percentage of correct trajectories for 5% noise on sensors

3 sensors 7 sensors

Left Right Left Right

Environment A 67% 70% 93% 87%
Environment B 28% 26% 69% 69%
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Figure 3.14: Distribution of ending robot positions in environment A. Each asterisk/-
circle represents the final robot position after 38 timesteps during which the RC network
drives the robot when the goal is located at the left/right arm of the T-maze. There
are 300 final robot positions resulting from 10 randomly generated reservoirs which are
simulated 30 times each.

7 sensors provides important additional information for solving the
T-maze task correctly when compared to a robot model of 3 sen-
sors. With more sensory information, performance increases by 37%
for environment A and by 45% for environment B, considering the
left goal in Table 3.5. Another observation is that the effect of in-
creasing the noise level on the sensory readings mainly affects the
experiments on environment B, specially the ones considering the
robot model with 7 sensors. In this case, the degradation in perfor-
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Figure 3.15: Distribution of ending robot positions in environment B. Each
asterisk/circle represents the final robot position after 46 timesteps during which
the RC network drives the robot when the goal is located at the left/right arm
of the T-maze. There are 300 final robot positions resulting from 10 randomly
generated reservoirs which are simulated 30 times each.

mance is up to 13%. Therefore, experiments in a bigger T-maze take
more advantage of the addition of extra sensory information. Fur-
thermore, higher noise levels negatively influence difficult T-maze
tasks, where the difficulty is directly related to the size of the main
corridor, i.e., the time gap between cue and required response.

The results considering the robot model with 7 sensors and a
noise level of 1% are graphically shown in Fig. 3.14 and Fig. 3.15
for environments A and B, respectively. These figures show the
position of the robot at the final timestep of each run6. These
positions are represented by circles and asterisks which indicate that
the sign (cue) for the corresponding run appeared at the right and
left sides of the corridor, respectively. There are 300 points for each
figure which represent distinct runs in the respective T-maze. As
expected, circles are concentrated on the right arm whereas asterisks

6Note that only the final position of the robot is evaluated in the figure,
despite the robot can still collide against a wall during the intermediate steps (a
collision will cause a step back and a small change on the direction of movement.)
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are located mainly on the left arm.

3.4 Discussion

There are limitations regarding the architecture used for modeling
these robot navigation tasks. As the reservoir has no feedback from
output units, the realization of any task is restricted by the size of
the reservoir, which is the main factor for memory capacity (Jaeger,
2002a). Bigger reservoirs have more memory to be used in modeling
more behaviors and hold temporary past stimuli for longer time
spans. Thus, the first measure to be taken to scale these tasks is to
increase the number of reservoir units.

Using leaky integrator reservoir units (Section 2.4) is another
way to boost the reservoir’s memory, by slowing down the dynam-
ics in the reservoir. Using leak rates, each unit maintains its own
internal state. A drawback of this approach is that slow reservoirs
do not react quickly to the input signals, which may be a problem
when fast dynamics in the sensory-motor coupling is required, e.g.,
to avoid collision against obstacles.

3.5 Conclusion

This chapter has presented two types of navigation tasks which are
modeled with a single RC network. A set of different sensory-motor
couplings (or behaviors) is modeled through a supervised learning
process which generates examples of desired behaviors or trajecto-
ries. Each of these behaviors get embedded in a sub-space attractor
in the dynamical system space after training the RC network.

Modeling multiple reactive behaviors (i.e., navigation attractors)
or even delayed control tasks (in the case of the T-maze task) has
been achieved by the use of salient external switches coming from
the environment or modeled explicitly by an extra input channel.
These external switches enables to embed each behavior into a sub-
space attractor in the dynamical system space. These sub-space
attractors are made possible by three reasons:

reactive behaviors the reactive nature of navigation behaviors
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yields robust attractor-like sensory-motor coupling through-
out the environment space;

shifting into sub-spaces training RC-based controllers is accom-
plished by linearly discriminating a set of sensory-motor cou-
plings, each type (or behavior) shifted into a sub-space of the
dynamical system by the use of sensory inputs;

coupling of controller and environment during testing, a tight
coupling of RC-based controller and environment makes it pos-
sible to achieve attractor-like trajectories in the environment
space.

Now, in Chapter 4, RC networks will be used to learn implicit
spatial representations of an environment, making it possible to pre-
dict the location of a robot as it navigates, based solely on noisy
information of distance sensors from small (simulated and real) mo-
bile robots. With this, a new internal mechanism for switching be-
tween behaviors is made possible. These context switches are fired
whenever the robot leaves one room and enters another one (i.e.,
by crossing doors connecting rooms), once the predictive outputs
modeling the location also change their values.

Thus, this chapter serves as a proof of concept for learning mul-
tiple reactive behaviors using external switches, and as a base for
enabling more complex sensory-motor coupling based on implicit
learned context switches (focus of Chapter 5).





4
Robot Localization

In order to implement complex goal-directed behaviors for au-
tonomous navigation systems in small mobile robots under a
bottom-up approach, it is necessary to extract useful environmen-
tal features using only few noisy sensory inputs such as inexpensive
infra-red distance sensors. In this chapter, Reservoir Computing
networks are used to model spatial environment features by pre-
dicting the location of simulated and real mobile robots based on
local information from few noisy distance sensors, overcoming sen-
sor aliasing problems which are disambiguated due to the fading
memory property of the dynamical reservoir.

4.1 Introduction

Traditional algorithms based on the Simultaneous Localization and
Mapping (SLAM) concept are, in many cases, expensive to imple-
ment due to high computational and memory demands and also hold
uncertainties during the calculation of the robot’s pose (Bailey and
Durrant-Whyte, 2006) (see Section 1.2.2). They usually need high
precision ranging data from, for example, a 2D laser range scanner
(or a camera in the case of Visual SLAM). Laser scanners are cur-
rently still expensive, consume a considerable amount of power, and
cannot easily be applied to small mobile robots. Low-cost, small and
lightweight robots that have a high battery autonomy will thus not
be able to use a SLAM based approach in most cases. These robot
platforms usually only have access to a limited number of ranging
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sensors which are low range and have high noise1.
Instead of trying to hard-code a priori knowledge and explicitly

modeling the environment of a mobile robot under the top-down ap-
proach, this chapter is based on designing intelligent systems which
learn internal models solely through local sensory information, thus
following a bottom-up approach. One of the advantages of using
these systems is that they are inherently robust to noisy sensors
and unpredictable events in dynamic environments.

Reservoir Computing networks are used in this chapter to detect
complex events as well as to predict the position of mobile robots in
their environments. For this, RC networks form an implicit spatial
representation which disambiguates the sensory space as the low-
dimensional input from distance sensors are projected into the high-
dimensional dynamic space of the reservoir (acting as a temporal
non-linear kernel). The short-term fading memory of RC networks
is crucial for solving the aforementioned tasks. It is not only the
instantaneous sensory inputs that are needed to solve these tasks,
but also the sensory history (Schönherr et al., 2001) and dynamics.

It has already been shown in (Hertzberg et al., 2002) that RC can
be used to detect events in an autonomous robot setting. This chap-
ter extends these results by also considering dynamic environments
for event detection, and goes largely beyond that work by using it
to construct implicit maps of complex, symmetric environments for
robot localization.

The idea of employing a neural network as a localization model
for the robot is also inspired by biological systems. Experiments
accomplished on rats show that their hippocampus forms activation
patterns that are associated with locations visited by the rat. These
so called place cells encode the spatial location of the animal into
its environment. They fire when the animal is in a particular loca-
tion (O’Keefe and Dostrovsky, 1971) (see Section 1.2.4.1 for more
details).

The experiments in this chapter are performed using not only
two different robot simulators, but also real robots in unstructured

1It is relevant to note that this thesis does not aim at directly competing with
or substituting the SLAM-based algorithms, although it may seem so. Instead,
it focus on RC-based approaches to robot navigation and environment learning
in a biologically inspired black-box fashion.
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environments. The datasets generated by simulators or obtained
from the real robot are used to train an RC network in a super-
vised learning way to detect events as well as to predict the robot
location. Both tasks are based solely on short-range, high-noise sen-
sory information, typically found in small and inexpensive mobile
robots. While in this chapter the training is done in a supervised
fashion, Chapter 7 tackles the unsupervised learning of locations, in
a way probably closer to the way place cells in biological systems
are formed.

After designing an RC-based location detector, new possibilities
open for goal-directed navigation using small mobile robots which
could be applied to domestic tasks such as floor cleaning. Addition-
ally, generative extensions of the RC network proposed here will be
introduced in Chapter 6, which can be used in tasks such as path
planning and predictive modeling of behaviors.

4.1.1 Types of spatiotemporal detection tasks

In a first part, it will be shown that an RC network can be used to
perform detection of arbitrarily predefined spatio-temporal events
during robot navigation tasks in dynamic environments. A descrip-
tion is given next.

events are given by well defined spatiotemporal occurrences in the
environment of a mobile robot, i.e., they occur in a certain
place during a particular interval of time and can also be re-
lated to which orientation the robot approached that certain
place. See Fig. 4.1 for an example.

Moreover, the same type of RC network can be used in different
types of localization tasks with specific levels of abstraction. The
three levels of spatial abstraction used in this chapter are given
below:

robot’s pose is defined by the robot coordinates and heading in
the global coordinates frame. It is the lowest level of abstrac-
tion. The dashed trajectory with arrows in Fig. 4.1 shows the
robot’s pose over time in space. This is referred as the pose
dimension.



room A room B

robot's pose

x,y, heading
locationsevents:

passing door

Figure 4.1: Hypothetical environment with 2 rooms for showing the detection of spa-
tiotemporal features of an environment: event detection and the different levels of ab-
straction (or dimensions) in robot localization tasks. The two events passing through a
door coming from different robot orientations are marked by two small arrows near a red
colored dashed line which represents the firing of both events. The black dashed line and
arrows represent the robot’s pose over time, which forms a fine trajectory in space (pose
dimension). More abstract concepts of localization is given by locations which are small
delimited sub-regions of similar size (such as a square) in an environment. The trajectory
of the robot in the location dimension is defined by sequence of squares colored in dark
grey. The most abstract spatial concept is given by whole environmental rooms, e.g.,
forming bigger areas separated by doors. Room A is colored in light grey, whereas room
B is in white.
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location is given by a small delimited sub-region of the environ-
ment. It is a more abstract concept than robot’s pose. At
the location dimension, the environment is divided into small
discrete areas such as squares in Fig. 4.1.

room is formed by a large environmental sub-region, usually
bounded by walls and doors. It is the most abstract spatial
concept used in this chapter. The room dimension is formed
by these several room sub-regions as shown in Fig. 4.1.

4.2 Robot Models

Two simulated robot models and a real robot are used in the follow-
ing experiments. The SINAR robot model, simulator and controller
are described in Section 3.2.1 from the previous chapter. The sec-
ond robot model is the e-puck robot, which is used in simulated and
real experiments, as described in the next section.

4.2.1 E-puck Robot

For convenience, the following information on the e-puck is also
provided in the Appendix B.2.

4.2.1.1 Description

The e-puck (Mondada, 2007) is a small differential wheeled robot
which was built primarily for education purposes, but has been
largely adopted in research as well. The mobile robot has a diame-
ter of 7 cm and is equipped with 8 infra-red sensors which measure
ambient light and proximity of obstacles in a range of (0 − 5] cm
originally, which effectively restricts the ability to read distances to
obstacles. Because of this, an extension turret for the real e-puck
robot has been built with 8 longer-range infra-red sensors capable of
measuring distances in the interval [4−30] cm (see Fig. 4.2(b)). The
actuators of the robot are 2 stepper motors, where the maximum
possible speed is 1000 steps per second.

The experiments in this thesis are accomplished with a simulated
version of the e-puck robot as well as with the real e-puck robot.
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(a) Webots e-puck (b) Extended Real e-
puck

Figure 4.2: E-puck robot models used in this chapter. (a) E-puck robot from We-
bots simulation environment. (b) Real e-puck robot extended by an additional turret
containing 8 infra-red sensors capable of reading distances from 4 cm to 30 cm.

The Webots software (Michel, 2004), used for simulations, provides
a physics model of the e-puck robot (Fig. 4.2(a)), i.e. the simulator
detects collisions and simulates physical properties of objects, such
as the mass, the velocity, the inertia, the friction, the spring and
damping constants, etc. A simulated timestep in Webots takes 32
ms.

The simulated e-puck model is used with two types of sensors
regarding their range: [0−5] cm for event detection experiments and
[0 − 15] cm for robot localization experiments, in order to provide
sufficiently rich data for learning the respective tasks. The velocity
of the simulated robot is limited to [0.6, 3] cm/s.

Table 4.1: Robot models used in this chapter

SINAR sim.e-puck
variant 1

sim.e-puck
variant 2

real e-puck

No. Dist. Sensors 17 8 8 8
Range of Dist. Sens. [0, 300] d.u. (0, 5] cm (0, 15] cm [4, 30] cm
Noise on sensors N(0, 60) d.u. N(0, 1.5) cm N(0, 4.5) cm inherent noise
Speed 0.28 d.u. [0.6, 3] cm/s [0.6, 3] cm/s [0.198, 5.08] cm/s
Physics model no yes yes –
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4.2.1.2 Robot Controller for Webots

The controller for the simulated e-puck robot, used to generate train-
ing data, is made of a simple algorithm which follows points from a
predefined trajectory in the environment. Its speed can be 3 cm/s,
1.25 cm/s or 0.63 cm/s.

4.2.1.3 Robot Controller for Real Environments

For recording datasets containing the robot’s sensor readings, a con-
troller written in Matlab steers the e-puck robot through a Blue-
tooth connection. This controller performs basic wall following
throughout the environment and it switches randomly to left or
right wall following with a certain probability τ2. When the robot
switches from right to left wall (or vice-versa), it may generate el-
lipsoidal trajectories inside a room until it finds a wall to follow.
Thus, the robot may stay navigating inside a particular room for a
random time interval. The results shown in this chapter considers
that τ = 0.03, which practically means that there is a probability
of approximately 60% for inverting the direction of movement while
the robot is navigating inside one of the rooms.

One iteration, for reading the distance sensors as well as for
motor actuation, lasts 200 ms. The speed actuator is limited to the
interval ±[15, 385] steps/s (or ±[0.198, 5.08] cm/s).

The eight distance sensors are sequentially read in groups of
2 while the robot is moving, that is, there are 4 cycles of sensor
reading, where each cycle corresponds to 2 simultaneous readings.
Considering an acquisition time of 25 ms on average for a cycle, the
total time spent on sensor reading is between 100 and 120 ms. Any
resulting inconsistencies from this sequential sensor reading during
robot movement are not corrected, so that learning has to cope with
this additional problem.

The input signal u(t) for the reservoir state update equation is
built by recording the eight distance sensors during robot navigation
and scaling them to the interval [0, 1]. For analysis purposes, the
robot position and orientation are estimated using pictures taken
from a fish-eye camera placed on a structure localized above the

2τ is the probability of changing the movement direction at each second and
determines the randomness of the robot movement.
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environment. Robot recognition and pose tracking are accomplished
using the ReactiVision software (Kaltenbrunner and Bencina, 2007).

4.3 Event Detection for Mobile Robots

Event detection in noisy environments is not a trivial task. There
can be very similar scenes from the robot’s perspective so that pre-
cise event detection becomes very difficult to accomplish (Jaeger,
2002a). The goal here is to achieve efficient event detection us-
ing reservoir computing. The detection of events from raw sensory
data is much related to the so called symbol grounding problem (or
anchoring) in robotics (Harnad, 2003). Several applications are ap-
pealing in this context once deliberative robotic systems can benefit
in several ways from efficient meaning extraction from sensory data
(Harnad, 2001; Vogt, 2001; Rosenstein and Cohen, 1999).

Examples of event detection in mobile robot navigation include
the detection of new objects in an environment, recognition of mo-
mentaneous situations such as: passing through door A, entering
room B, cyclic robot trajectories, etc. The task could also be de-
fined in a more complex way such as the detection of a sequence of
events (e.g., enter and exits room B through the same door).

4.3.1 Environments

Two experiments are conducted for the event detection task. The
environments used for SINAR and e-puck are shown in Fig. 4.3(b)
and Fig. 4.3(c), respectively. The first environment is composed
of a large (blue) corridor with a (yellow) target at each end (they
appear as dark and light gray objects in black and white format).
During simulation, the robot keeps navigating through the corri-
dor and capturing the targets that are sequentially put back in the
same location. A blinking object located in the middle of the corri-
dor, that disappears and re-appears by a random time interval, can
force the robot to change direction by blocking its way. In the sec-
ond environment, the e-puck robot follows a predefined trajectory
which continually visits the entire environment. Its trajectory can
be inverted when it reaches the middle of the environment marked
by a dotted line in Fig. 4.3(c) with a probability of 50%.
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(a) Definition of the 4 events (b) SINAR environment S3

(c) e-puck environment E1

Figure 4.3: Environments used for the event detection task. (a) Four events
are labeled and shown graphically (by arrows). (b) SINAR environment with a
blinking obstacle in the middle of the corridor, indicated by an arrow. A typical
robot trajectory (after controller learning) can be seen in the figure. Two boxes
in the environment are used as targets for the robot. (c) e-puck simulation
environment (the 4 events are defined similarly). The dotted line represents
a decision point which makes the robot cross the line or go back with equal
probabilities.

There are four possible events of predefined duration and loca-
tion, which are labeled in Fig. 4.3(a). The interpretation should be:
when the robot passes through a predefined location with a specific
heading, an event should be detected for a short-time interval, e.g.,
entering the corridor corner area, passing through the middle of the
corridor.

4.3.2 Settings

Experiment 1 is accomplished considering the SINAR environment
S3 and experiment 2 takes place in the e-puck environment E1. Ex-
periments 1 and 2 have 126.000 and 120.000 timesteps of simulation
time, respectively. Parameter configuration for both experiments
are shown in Table 4.2.

In order to match the timescale of the sensory input to the
timescale of the event detection task, both data downsampling (dt)
and leak rate (α) in the reservoir are used. Although resampling
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Table 4.2: Parameter configuration for event detection

Model SINAR e-puck

Number of input channels ni = 18 ni = 10
Input connection fraction cri = 0.3 cri = 0.3
Input scaling υri = 0.2 υri = 0.2
Input downsampling dt = 20 dt = 15
Input to output connections yes yes

No bias

Reservoir size nr = 800 nr = 800
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.9 ρ(Wr
r) = 0.9

Leak rate α = 0.6 α = 0.8

Number of output channels no = 4 no = 4
Output feedback to reservoir no no

and leak rate are considered equivalent (Schrauwen et al., 2007), it
seems that the combination of both methods yields superior perfor-
mance, as it will be shown in the results, by more finely adjusting
the temporal dynamics of the reservoir to the dynamics of the mod-
eling task. The value of the parameters dt and α was optimized by
performing a grid search, i.e., the combination of parameters with
highest test performance was chosen.

The inputs to the network for the SINAR model are 17 distance
sensors and 1 robot actuator (direction adjustment) while for the
e-puck model the inputs are composed of 8 sensors and 2 motor
actuators. Although a large reservoir of 800 units is used, smaller
reservoirs containing 200 or 400 nodes have shown to also perform
very well on average. The readout layer has 4 output units (one for
each event detector) which are post-processed by a function g de-
fined in (2.22) in Section 2.7, where the Fisher relabeling for unbal-
anced datasets (2.24), which is applied to the current event detection
task, is also described.

The performance measure considers the number of correctly pre-
dicted observations (defined in (2.26)) and uses a 7-fold (8-fold)
cross-validation method for the SINAR (e-puck) model. It is impor-
tant to note that if the dataset is resampled, then the output of the
network is upsampled to the original sampling rate of the dataset
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(b) Event detection using simulated e-puck variant 1

Figure 4.4: Event detection performed by RC network. The gray solid line
represents the actual event whereas the black points corresponds to the predicted
events. Mispredictions are marked with circles. (a) Using SINAR simulation
model (performance of 95.4 % on this test data) (b) Event detection using e-
puck simulation model (performance of 93.1 % on this test data).

so that the performance is correctly calculated.

4.3.3 Experimental Results

The results are shown in Fig. 4.4. For both robot models, the
RC network performs very well by achieving 95.4% and 93.1% of
classification performance on test data. Although the events during
a robot run are not periodic, the 4 classes of events are correctly
detected during the whole simulation, except for a few mispredic-
tions. Most of the errors are explained by the temporal resolution of
the RC-based detector, that is, the reservoir is sometimes not accu-
rate enough in the beginning/end of an event (i.e., in the temporal
boundary of events).

In Fig. 4.5, it can be seen how the downsampling rate of the
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Figure 4.5: Test performance for resampling rate vs. reservoir size. Each point of
the plot is the mean performance (correct classification rate) over 30 runs for the event
detection task using the e-puck robot model.

dataset (dt) and the size of the reservoir influence the test perfor-
mance on the event detection task using the e-puck robot model.
If a dataset is downsampled by dt = 10, for instance, the result-
ing dataset will be 1/10 smaller than the original one, and will be
smoothened similarly to a low-pass filtering of the input. Fig. 4.5
shows that a downsampling of 15 timesteps is the optimal choice.
It is possible to observe that when dt is bigger than 30 timesteps,
as the downsampling rate increases the performance deteriorates.
The figure also shows that bigger reservoirs (with more neurons)
have more memory (while require less resampling), thus increasing
performance.

Statistics on experiments 1 and 2 are given in Table 4.3. Each
experiment is evaluated 30 times with different stochastically gen-
erated reservoirs and the results are averaged over these 30 runs.
The table shows that the results are consistent, with 93.2% and
92.3% of performance on test data for SINAR and e-puck models,

Table 4.3: Performance results for event detection

Model Timesteps Train Perf. Test Perf. Perf. Events 1, 2, 3 and 4 resp.

SINAR 126 K 94.7 % 93.2 % 95.5% 95.6% 100% 99.6%
e-puck 120 K 93.2 % 92.3 % 86.9% 97.2% 96.7% 82.6%
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respectively.
Despite events 2 and 3 can be considered symmetric, they show

distinct performances (respectively, 95.6% and 100%). The reason
for different performances may be caused by two factors: one is that
the reactive controller which steers the robot may generate differ-
ent trajectories and thereby distinct streams of sensor activations
right before events 2 and 3; another factor is that event 2 may have
appeared in the test sequence more times than event 1, thus increas-
ing the chance that event 2 is mispredicted. One can also note that
the performance for the e-puck model for events 1 and 4 are worse
than the performance for events 2 and 3. This is probably due to the
robot controller which exhibits different velocities during navigation
(low speed close to events 1 and 4 and high speed near events 2 and
3).

4.4 Robot Localization

The previous section has shown that an RC network can be used to
detect complex events in robot navigation with good performance.
Now this section tackles the detection of more complex spatiotem-
poral environment features during robot navigation. Instead of only
detecting events, the goal is to predict the current location of the
robot based on the same kind of instantaneous sensory information,
giving rise to a more difficult and interesting problem. This section
shows how a reservoir can be used for robot localization. Similar
preliminary work which uses a Long-Short Term Memory RNN for
this task is described in Forster et al. (2007).

The proposed localization system is built upon the learning of an
implicit map of the environment by a RC network. The output layer
of the RC network (see Fig. 1.4), represented by the column vector
y(t) in (2.2), creates a spatial representation of the environment
solely from few distance sensors. The vector y(t) results from a lin-
ear combination of a temporally processed input vector of distance
measurements. In this work, the system receives allothetic signals
as input (i.e., external sensory input given by distances sensors) as
well as idiothetic signals in the form of actuator feedback. How-
ever, the proposed system acquires the same localization
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properties and presents similar performances for the fol-
lowing experiments whether this actuator feedback is used
or not. Neither odometry information nor dead reckoning (path
integration) are used in this work. Odometry is not biologically
plausible: counting wheel revolutions for determining the next posi-
tion is very unlikely to happen in biological systems. Instead, these
systems could have very basic forms of noisy dead reckoning with
very limited capacity for path integration over extended trajectories.
In the case of an omni-wheeled robot, for instance, dead reckoning
would hardly work because of intrinsic noise present in movements
which are typically based on wheel slippage.

Next, the three levels of abstraction in location prediction, intro-
duced in Section 4.1.1, are formulated as regression or classification
tasks.

4.4.1 Pose estimation with output feedback

Robot’s pose estimation can be formulated in the form of a regres-
sion task where the exact robot coordinates and heading in the
global coordinates frame are expected as output. The RC architec-
ture used for this task is shown in Fig. 4.6(a) where the estimated
robot’s pose at the output layer is fed back into the reservoir. This
additional stimulation endows the reservoir with long-term memory
(Maass et al., 2006) for the pose estimation task, effectively improv-
ing its performance. The fading memory of a reservoir which has no
feedback connections from the readout layer is not enough for satis-
factory performance. During training, the desired x, y, θ coordinates
are teacher-forced through the output units into the reservoir (see
Section 2.5) while after training the predicted pose is fed back. The
continuous valued predictions located at the output layer are exter-
nally driven solely from few noisy distance sensor’s measurements
which are projected into the dynamic non-linear reservoir space.

4.4.2 Location and Room detection

The localization task can be formulated as the detection of sub-
regions of an environment. This can be accomplished by discretizing
the environment into a set of delimited areas of specific scales, such
as locations and rooms. A location in this work consists of a small
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sub-region of size ranging from 1 to 5 times the size of the robot,
whereas a room is comprised by a much larger sub-region of the
environment, usually divided by doors and corridors.

The task is to detect the environmental sub-region in which the
robot is currently located. This can be accomplished by using an RC
architecture shown in Fig. 4.6(b), where the readout output layer is
trained to perform classification (Section 2.7). Thus, each output
in this layer corresponds to one sub-region in the environment and
should be activated as soon as the robot enters the respective loca-
tion or room. The example given in Fig. 4.1 shows squared locations
in grey which represent the activated outputs of the readout layer
as the robot navigates in the environment.

4.4.3 Environments

Three different robot models are used to validate the capability of
RC networks for modeling the localization of robots in several un-
known environments. Whereas SINAR is a fast and flexible simu-
lator for mobile robots, the e-puck model in Webots provides phys-
ically realistic 3D simulations. The third model is the real e-puck
robot.

4.4.3.1 SINAR robot

The environments used for the pose estimation task using the
SINAR model are shown in Fig. 4.7. The first environment (S4) is
a long T-maze which is used to test the memory capacity of the RC
network. When the robot is driving along the longest corridor, the
frontal distance sensors do not detect the ending corner of the cor-
ridor since they saturate. Therefore, for correct pose detection, it is
strictly necessary the use of the short-term memory of the reservoir.

The generation of trajectories is based on (Antonelo et al., 2006)3

and is explained next. The robot trajectory in environment S5 de-
pends on the current visible target - only a randomly chosen attrac-
tive object is visible at a time. The controller keeps on capturing
targets indefinitely during simulation, i.e., a target is hidden when

3Other controllers could be used for data generation. So, the use of the
specific controller is not critical for the results in this chapter. For instance,
Braitenberg vehicles (Braitenberg, 1984) could be used instead.
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Figure 4.6: Two RC architectures for modeling robot localization. (a) RC architecture
for modeling regression tasks with output feedback such as the prediction of the robot co-
ordinates and heading in the global coordinates frame. (b) RC architecture for modeling
dynamic classification tasks such as detection of locations and rooms of an environment.

captured and another one is made visible. In environment S5, the
robot’s trajectory depends on the dynamics of the blinking obstacles
(see Fig. 4.7) and on Gaussian noise which is added to the motor
output. This diversification of trajectories is accomplished in order
to make the prediction problem more difficult.

Two maze-like environments S6 and S7 shown in Fig. 4.8 are
used for the location detection task. Environment S6 contains 64
predefined locations, whose centers are displayed by small triangles
labeled by numbers. The second environment S7 has 29 locations
distributed in a symmetric map.

4.4.3.2 E-puck robot

The environment E2 shown in Fig 4.9(a) is used for location and
room detection. It is composed of 4 big rooms with doors connect-
ing them. Fig 4.9(b) shows 30 points distributed in the map which
are connected by lines representing possible predefined robot paths
between them. When the robot reaches a point which can lead to 2
other possible points, the robot controller decides to choose one of
the points with equal probabilities. In this way, the robot may stay
in room 3 for a variable time interval in the same run, for instance.
The location detection task consists of predicting which one of the
30 points the robot is most close to. The room detection task is
based on the map shown in Fig 4.9(c) and consists of predicting the
current robot room out of the existing 4 rooms.
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(a) SINAR Environment S4

x

y

660 d.u.

365 d.u.

"blinking" objects

(b) SINAR Environment S5

Figure 4.7: Environments used for the experiments on pose estimation using
the SINAR model from Table 4.1. Dimensions are given in distance units (d.u.).
(a) Long T-maze environment. Locations are marked by small labeled triangles
and attractive objects are located at each arm’s corner. (b) Complex room
environment with two dynamic objects at locations 8 and 30 which blinks by
random time intervals (blocking or freeing the robot’s way).

The environment E3 for the real e-puck, shown in Fig. 4.10, has
3 rooms and a corridor connecting them. A camera mounted above
the environment records the position of the robot at each timestep.
In this way, the labels for the supervised learning of locations and
rooms can be collected. For generating datasets with recorded sen-
sor readings, the robot controller described in Section 4.2.1.3 is used.
The total number of recorded samples amounts to 192.000 timesteps,
which corresponds to approximately 11 hours of robot navigation.



(a) SINAR Environment S6

(b) SINAR Environment S7

Figure 4.8: Environments used for the experiments on location detection using the
SINAR model from Table 4.1. Dimensions are given in distance units (d.u.). (a) The
first environment is tagged with 64 labels displayed by small triangles. (b) The second
environment has 29 labels distributed through very similar areas.



(a) Environment for e-puck (E2)

(b) Map for Location detection

(c) Map for Room detection

Figure 4.9: Environment used for localization experiments using the simulated
e-puck variant 2 robot from Table 4.1. (a) the e-puck in its 3D environment.
(b) the map of the environment with 30 locations to be detected. Each location
is represented by a point and labeled with numbers. The points are connected
by lines which represent possible paths between locations. (c) the map of the
environment showing the 4 rooms to be detected and the same robot exploring
trajectory.



(a) Real environment for e-puck (E3)

(b) Robot trajectory

Figure 4.10: Environment used for localization experiments using the real e-puck robot
from Table 4.1. (a) Environment (120 cm × 90 cm) composed of three rooms and one
corridor. The position of the robot is tracked with a camera mounted above the environ-
ment for analysis purposes. (b) Trajectory in gray generated by the robot controller in
environment E3 for 60.000 timesteps (or 3.3 hours), with labeled asterisks representing
delimited locations.
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Table 4.4: Parameter configuration for pose estimation

Model (Env.) SINAR (S4) SINAR (S5)

Number of input channels ni = 17 ni = 17
Input connection fraction cri = 0.4 cri = 0.5
Input scaling υri = 0.4 υri = 0.6
Input downsampling dt = 30 dt = 50
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 800
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.9 ρ(Wr
r) = 0.9

Leak rate α = 1 α = 1

Number of output channels no = 3 no = 3
Output connection fraction cro = 0.4 cro = 0.3
Output feedback scaling υro = 0.4 υro = 0.025

4.4.4 Settings

4.4.4.1 Pose Estimation

The parameter configurations for pose estimation on environments
S4 and S5 are given in Table 4.4. The inputs to the network are only
the 17 distance sensors of the robot. The readout output layer has 3
output units which corresponds to the normalised robot coordinates
and heading. Both ridge regression for the output training and the
adding of Gaussian noise with variance of 0.001 to the state update
equation is used for regularisation. Only using ridge regression is not
enough to get stable output feedback behaviour. The downsampled
dataset for environment S4 (environment S5) is divided in two parts
of 2400 and 1200 samples (5600 and 800 samples) which are used
for training and testing, respectively.

4.4.4.2 Location and Room Detection

The configurations used for the experiments on location and room
detection with SINAR, simulated e-puck variant 2, and real e-puck
robot models from Table 4.1 are presented in Table 4.5 and Ta-
ble 4.6, respectively.

The inputs to the network ni are 17 distance sensors and 1 robot
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Table 4.5: Parameter configuration for location detection

Model SINAR simul.e-puck
variant 2

real e-puck

Number of input channels ni = 18 ni = 10 ni = 8
Input connection fraction cri = 0.3 cri = 0.3 cri = 0.3
Input scaling υri = 0.1 υri = 0.9 υri = 2
Input downsampling dt = 50 dt = 10 dt = 1
Input to output connections yes yes yes

No bias

Reservoir size nr = 800 nr = 800 nr = 1200
Reservoir connection fraction crr = 1 crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.9 ρ(Wr
r) = 0.9 ρ(Wr

r) = 0.99
Leak rate 1 α1 = 0.6 α1 = 0.05 α1 = 0.005
Leak rate 2 −− α2 = 0.8 α2 = 0.01
Leak rate 3 −− α3 = 1 α3 = 0.2

Number of output channels no = {64, 29} no = 30 no = 34
Output feedback to reservoir no no no

actuator (direction adjustment) for the SINAR model; 8 distance
sensors and 2 motor actuators for the simulated e-puck variant 2;
and 8 distance sensors for the real e-puck. The size of the readout
output layer (no) is equivalent to the number of predefined locations
or rooms in the environment. The postprocessing function g for the
readout units is given by (2.21) in Section 2.7. The resampling rate
(dt = 50) and leak rate (α1 = 0.6) are found by performing a grid
search for the SINAR model. The experiments with the simulated
and real e-puck consider 3 neural pools in the reservoir, each one
with different leak rates (α1, α2, α3). These leak rates enable the
operation of the reservoir in multiple different timescales, which is
an important feature when the task considers a robot with a vary-
ing speed (in our case, the robot can have 3 different velocities).
The downsampling rate dt and the three leak rates were empirically
chosen for both e-puck models.
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Table 4.6: Parameter configuration for room detection

Model sim.e-puck
variant 2

real e-puck

Number of input channels ni = 10 ni = 8
Input connection fraction cri = 0.3 cri = 0.3
Input scaling υri = 0.9 υri = 2
Input downsampling dt = 20 dt = 1
Input to output connections yes yes

No bias

Reservoir size nr = 800 nr = 1200
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.9 ρ(Wr
r) = 0.9

Leak rate 1 α1 = 0.05 α1 = 0.005
Leak rate 2 α2 = 0.8 α2 = 0.01
Leak rate 3 α3 = 1 α3 = 0.2

Number of output channels no = 4 no = 4
Output feedback to reservoir no no

4.4.5 Experimental Results

4.4.5.1 Pose estimation

The results on test data can be seen in Fig. 4.11. The first plot shows
that the RC system can cope very well with the long T-maze. The
robot trajectory is not completely repetitive: between timesteps 200
and 400, the robot captures two targets (observe the changes on Y
coordinate) whereas between timesteps 800 and 1200, four targets
are captured (the Y robot coordinate fluctuates for a longer period).
The average NMSE over 30 randomly generated reservoirs is 0.025
with standard deviation of 0.02.

The second plot shows the performance on test data for environ-
ment S5. This second experiment required more parameter tuning
than the first one due to the apparent increased complexity associ-
ated with the robot trajectory (see Fig. 4.11). Nonetheless, the RC
network correctly follows the target robot’s pose (x,y and heading).
The average NMSE over 30 runs is 0.283 and the standard deviation
is 0.072.

These experiments show that RC is able to create an implicit
map of the environment and use it for localization purposes on a
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coordinate basis. It works in environments that look spatially very
similar and need short-term memory to know the correct location,
and even in complex maze-type environments.

4.4.5.2 Location detection

The next experiment is accomplished with the first environment S6
from Fig. 4.8 and lasts 180.000 timesteps. The resulting robot oc-
cupancy grid can be seen in Fig. 4.12(a): it shows that the reservoir
predicts the current location of the robot very well, with a classi-
fication rate of 91.6% on test data. Another experiment uses the
same environment S6 with 11 additional slow moving obstacles dis-
tributed throughout the environment. These dynamic objects alter
the behavior of the robot, e.g., by blocking navigation and producing
avoidance behaviors, resulting in an extra source of noise to sensory
readings. The simulation takes 180.000 timesteps. The respective
occupancy grid in Fig. 4.12(b) shows that the RC network correctly
predicts the location in 81.1% of the samples. Some of the mispre-
dictions are located a bit further from the actual position, due to
the new source of dynamics and noise, although they generally tend
to be very short. As comparison, the RNN-based room detector in
Forster et al. (2007) which has 36 inputs coming from a laser range
scanner presents a test classification rate of 81.8% for non-noisy en-
vironment and 82.8% with 10 slow moving obstacles for a simulated
house environment of 15 rooms.

The experiment accomplished in environment S7 from Fig. 4.8(b)
tackles sensor aliasing problems more visibly: the environment has
many symmetric areas and trajectories. For instance, going from
position 27 to 26 looks identical to the robot as going from position
22 to 24. The simulation takes 150.000 timesteps. The resulting oc-
cupancy grid in Fig. 4.12(c) shows that a classification rate of 89.1%
on test data makes the RC network an efficient location detector in
symmetric environments.

The following experiments are based on the simulated e-puck
variant 2 robot in environment E2. The results in Fig. 4.13 show
that the performance increases significantly when a reservoir with 3
neural pools of distinct leak rates is used instead. Several mispredic-
tions present in Fig. 4.13(a) are not present anymore in Fig. 4.13(b)
which corresponds to the multiple leak rates case. The increase in



(a) Pose estimation for S4

(b) Pose estimation for S5

Figure 4.11: Pose estimation on test data using the SINAR model. The dashed
lines represent the desired pose (i.e., robot’s coordinates and heading) whereas
the solid line corresponds to the output of the RC network. (a) plot for environ-
ment E4, the long T-maze (dashed lines not visible). (b) plot for environment
E5, a diverse and dynamic environment.
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(a) Location Detection in S6

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

Timestep (x 103)

Lo
ca

tio
n

(b) Location Detection in S6 with 11 moving obstacles

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

Timestep (x 103)

Lo
ca

tio
n

(c) Location Detection in S7

Figure 4.12: Robot occupancy grids showing the predicted and the true robot location
as black points and a solid gray line, respectively, on test data. Mispredicted locations
are represented by a circle. (a) Experiment in environment S6 with a test performance
of 91.6% of correct detection. (b) Experiment in environment S6 with 11 slow mov-
ing obstacles with a test performance of 81.1% of correct detection. (c) Experiment in
environment S7 with a test performance of 89.1% of correct detection.
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Table 4.7: Performance results for location detection

Model (Env) Leak Timesteps Train Perf. Test Perf. Std Test

SINAR (S6) no 180 K 94.0 % 89.2 % 0.4%
SINAR (S6) yes(1) 180 K 94.3 % 90.7 % 0.1%
SINAR (S7) no 150 K 94.4 % 88.6 % 0.3%
SINAR (S7) yes(1) 150 K 94.4 % 89.1 % 0.3%
SINAR (S6mov) no 180 K 93.0 % 76.0 % 0.7%
SINAR (S6mov) yes(1) 180 K 94.2 % 79.1 % 0.5%
sim.e-puck vari-
ant 2 (E2)

no 40 K 87.2 % 78.9 % 0.4%

sim.e-puck vari-
ant 2 (E2)

yes(3) 40 K 90.4 % 85.1 % 0.5%

real e-puck (E3) yes(3) 192 K – 83.3 % –

performance is of at least 6% in correctly classified samples when
compared to the experiment with a normal reservoir, i.e., without
multiple leak rates.

A summary of the localization experiments with corresponding
results is shown in Table 4.7. This table also presents results from
experiments which only used dataset resampling, thus, disregard-
ing the use of leak rates (indicated by the word no in the column
Leak). Each experiment is evaluated 30 times with different stochas-
tically generated reservoirs and the results are averaged over these
30 runs. One can observe that the use of leak rates in addition to
dataset resampling yields the highest increases in performance for
the experiments with the SINAR model in environment S6mov (with
moving obstacles), i.e., 3.1% increase, and with the simulated e-puck
variant 2 robot, using 3 neural pools of distinct leak rates, i.e., 6.2%
increase.

Experiments only considering distance sensors as input, by re-
moving actuator feedback, result in similar performance reported
for the experiments reported in this section.

4.4.5.3 Room detection

The results for environment E2 are shown in Fig. 4.15 using the
configuration from Table 4.6. The RC-based room detector is very
efficient for at least 7000 timesteps, showing a performance of 93.6%
on test data. There are few mispredictions, and most of them are
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(a) No leaky-integrator units (or α = 1)
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(b) 3 neural pools of distinct leak rates

Figure 4.13: Location detection performed by a RC network for the simulated e-puck
variant 2 robot in environment E2 on test data. The gray solid line represents the actual
location whereas the black points are the predicted location. Mispredictions are marked
with circles. (a) A normal reservoir gives a performance of 77.7%. (b) A reservoir
containing 3 neural pools of distinct leak rates yields a performance of 84%.
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Figure 4.14: Location detection results on test data using the real e-puck robot in
environment E3. The gray solid line represents the desired robot room while the actual
network output is represented by black points (the miss-classifications are marked with
red circles).
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Figure 4.15: Room detection performed by an RC network for the e-puck
robot in environment E2 on test data. The performance in terms of correctly
classified rooms is 93.6%. The gray solid line represents the actual room whereas
the black points are the predicted room. Mispredictions are marked with circles.
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Figure 4.16: Room detection results on test data using the real e-puck robot
in environment E3. The gray solid line represents the desired robot room while
the actual network output is represented by black points (the miss-classifications
are marked with red circles).

located in the temporal boundaries between one room and the next
one.

The results for the real e-puck in environment E3 are shown in
Fig. 4.16. The training process uses 7/8 of the data (1/8 is used
for testing) and it takes around 208 seconds, of which 140 seconds
are spent on generating the matrix X with the harvested reservoir
states4 (see Section 2.5).

The classification performance for room detection is very good
considering the random behavior of the robot: 98.1% of the test
data is correctly classified. Fig. 4.16 shows that the trained RC
network is an efficient room detector and that most errors are made

4Considering an Intel Core2 Quad CPU platform with 8 GB RAM.
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Table 4.8: Performance results for room detection

Model (Env.) Timesteps Train Test Test Perf. Rooms 1, 2, 3 and 4 resp.

sim.e-puck
variant 2 (E2)

39 K 97.2% 93.1% 95.4% 91.5% 91.8% 93.1%

real e-puck
(E3)

192 K – 98.1% –

in the boundaries between a room and the next one, represented by
red circles in the figure.

Table 4.8 shows statistics for the room detection task. Each one
of the rooms in E2 is correctly detected by a mean rate of at least
91%. The mean classification rate on test data for the real e-puck
robot in environment E3 is 98.1%. For comparison, the RNN-based
room detector from Forster et al. (2007) correctly detects rooms 80%
of the time, considering 35 inputs from a laser range scanner and a
simulated environment with 15 rooms.

4.4.5.4 Kidnapping

The RC network also copes well with the kidnapping situation (also
reported in (Forster et al., 2007)). In a new experiment using en-
vironment S6, the robot is replaced from location 34 to location 20
(see Fig. 4.17(a)). The network is able to successfully predict the
robot position when the robot reaches location 16. Note that the
predicted locations following the kidnapping are near location 34,
as if the robot kept the original path. After some timesteps, the
network realizes it is actually in location 16, given the history of
sensory inputs since the kidnapping. Another example is given in
the second plot of Fig. 4.17(a), where the robot is kidnapped from
location 41 to location 46. Note that the RC network is not trained
for the kidnapping event. At first, the performance of the kidnap-
ping situation reported above is similar to the work in (Forster et al.,
2007): both can predict the correct location (room in their work)
after some timesteps, despite the different robot model and environ-
ment used in (Forster et al., 2007); for instance, they use 36 inputs
while the e-puck robot has only 8 distance sensors.
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Figure 4.17: Occupancy grid after kidnapping the robot in environment S6 of
Fig. 4.8. The solid gray line represents the actual robot position. Correct
predictions are given by black points while wrong predictions are marked with
circles. The predictions of the RC network are labeled with numbers after the
robot is kidnapped. (a) At time step 9551, the robot is moved from position
34 to position 20. The reservoir network predicts successfully the current robot
position when the robot is in location 16. The robot visits 2 locations (20 and
17) until the successful prediction. (b) At time step 18730, the robot is moved
from position 41 to position 46. The reservoir network predicts successfully the
current robot position when the robot is in location 50. The robot visits 4
locations (47, 48 and 49) until the successfull prediction.

4.5 Conclusion

This chapter has shown that an RC network is a powerful black-
box modeling method for learning implicit models of the
environment of a mobile robot from local noisy sensory in-
formation. The reservoir’s recurrent connections and its dynamic
regime provide a mechanism of short-term memory which is fit to
solve sensor aliasing problems, where multiple locations that the
robot may be in the environment provide identical readings in the
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local low-dimensional sensory space. With the reservoir’s fading
memory and its non-linear projection in a high-dimensional space,
sensory readings are correctly mapped to locations (or events) in the
readout output layer as the mobile robot navigates in complex, dy-
namic, and symmetric environments. The experiments are carried
in several environments from two different simulators and using the
real e-puck robot in an unstructured environment.

It has been shown that the same reservoir-based method can
model position detectors at different levels of abstraction.
The continuous-valued robot’s pose in the global coordinate frame,
given by x, y coordinates and heading, can be modeled by an RC net-
work with feedback from the output units and trained to perform
regression. More abstract discrete representations of the environ-
ment such as small delimited locations and whole rooms can also
be learned with an RC network via classification. Thus, Reservoir
Computing has shown to be a general method for modeling envi-
ronmental representations of different types and scales, considering
noisy sensors which provide only local, ambiguous information from
the environment.

The importance of timescales in RC-based systems is
clearly demonstrated in this work, especially when the speed of a
mobile robot is not constant. By employing multiple leak rates or-
ganized in pool of neurons in the reservoir, the resulting dynamics of
this reservoir better fits the multiple timescales components of the
input signal given by the distance sensors of a mobile robot. From
an RC perspective, performance could further be improved, for ex-
ample, by using a so called band-pass reservoir (wyffels et al., 2008).
This idea consists of adding band-pass filters to a reservoir so that
it can capture a wide range of frequencies or timescales. This setup
could greatly improve the performances on tasks which consider a
wide range of robot speeds.

The reservoir, however, also models the underlying behavior or
navigation attractor given by the robot controller. This controller
generates training data according to a reactive sensory-motor map-
ping, perturbed by noise and some stochastic decisions. When this
data is used for training an RC network, the locations are learned
based on the projection of this navigation attractor in sensory space
to the dynamical reservoir’s space. As a consequence, locations
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which are never visited in the training dataset will not be recog-
nized by the trained RC network. Similarly, an RC network trained
with data from a specific controller could not generalize to a dif-
ferent controller in the testing stage. This is evident as one notes
that the training was accomplished based on the projection of the
navigation attractor. An ultimate consequence of this is that there
must be important limitations to using this architecture as a gen-
eral localization system for mobile robots. Particularly, the use of
the RC architecture is limited to test data generated from
controllers which are similar to the ones used to collect
training data.

By learning an implicit sensor-based representation of a complex
robot environment, an RC network can be used to boost navigation
capabilities of an intelligent system. This network, by predicting the
current location of a robot and even the previously visited location,
can convert a simple reactive navigation system (from Chapter 3) to
a goal-directed navigation system capable of generating a sequence
of reactive behaviors through a multi-room environment until a des-
tination room is achieved. This is the focus of the next chapter.





5
Goal-directed Navigation

In order to learn context sensitive sensory-motor coupling via a
bottom-up approach, it is necessary to design architectures which
model different aspects of a navigation task in distinct timescales.
As seen in previous chapters, RC networks can be used to perform
localization as well as to learn multiple navigation behaviors in par-
ticular environments. In this chapter, by combining previous results,
a hierarchical architecture composed of two modules is proposed: a
localization module and a navigation module which operate at slow
and fast timescales, respectively. The former module is trained to
predict the current and the previously visited room based on the
current distance sensors’ readings, whereas the latter is trained to
steer the robot in a goal-directed manner based on the input sig-
nals received from the localization module, distance sensors, and
the target room. After training this multiple timescale hierarchical
architecture with examples of navigation routes in simulated envi-
ronments, the resulting RC-based controller is able to successfully
navigate to specific target rooms in both simple and large unknown
environments composed of many rooms.

5.1 Introduction

The RC networks for modeling navigation attractors or behaviors
presented in Chapter 3 are based on an external switching mech-
anism modeled explicitly by an additional input to the network.
Although these networks can model multiple behaviors in an envi-



112 5. Goal-directed Navigation

ronment, their applicability is limited to small environments.
This chapter tackles the problem of goal-directed robot naviga-

tion based on implicit learned maps in large unknown environments.
In this context, the task of a mobile robot is to reach a well defined
target room (indicated by a human user) in a particular environ-
ment. Traditional approaches would require the explicit modeling
of the environment and expensive path planning routines to be ex-
ecuted on the model.

Instead of explicit modeling the environment, this work follows a
bottom-up approach in that hierarchical RC networks are trained to
perform goal-directed navigation according to a supervised learning
process as presented in Chapter 3. While Chapter 3 has dealt with
learning of sensory-motor coupling without internal models or repre-
sentations of the environment, this chapter combines the RC-based
location detector developed in Chapter 4, as a form of internal model
predicted solely from current sensory readings, with the supervised
learning process elaborated in Chapter 3.

The proposed hierarchical architecture is composed of two reser-
voir modules, one for localization and another for navigation. The
localization reservoir receives input from only 8 low-accuracy dis-
tance sensors and predicts the current and previously visited robot
room. The mapping between reservoir states to the predicted rooms
is learned in a supervised way from examples of robot trajectories
in the considered environment (as shown in Chapter 4). In a sec-
ond learning stage, the navigation reservoir is trained with several
examples of routes from a starting location to a goal location, using
information from the localization reservoir (i.e., predicted locations),
the distance sensors and the desired goal location, given as input to
the navigation system. Therefore, this navigation module integrates
different types or modalities of input and can simultaneously learn
reactive and deliberative behaviors (also shown in Chapter 3 for
delayed response tasks like the T-maze task).

It is important to observe that the internal reservoir memory is
essential for learning an internal model of the environment and of
the robot task. The recurrent reservoir has states which reflect the
recent history of inputs, representing a short-term memory capable
of combining and dealing with different sources of information. Its
inherent capability for modeling temporal non-linear systems makes
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it very interesting for constructing internal models. As argued by J.
Tani (Tani, 2007), behavior-based systems without internal models
are blind. So, by using reservoir computing techniques for modeling
goal-directed navigation tasks, the aim is to create an unifying and
efficient method for supervised learning of deliberative and reactive
behaviors as well as its underlying internal models.

Chapter 3 has shown that multiple behaviors can be embedded
into a single dynamical reservoir and switching between two behav-
iors is achieved by an extra input channel which shifts the operating
point of the reservoir state space. This transition initiated by an
external input is able to change the sensory-motor coupling to a dif-
ferent operation mode. These different operation modes are called
reactive navigation attractors or behaviors. In this chapter, the in-
ternal models learned with RC by the localization module represent
hidden layers whose activity also induces changes in the sensory-
motor coupling of the navigation reservoir. Thus, the localization
module guides the operation of the navigation module, by changing
the sensory-motor coupling into different navigation attractors as
the robot enters and leaves rooms. In this way, the proposed archi-
tecture is able to perform a sequence of primitive reactive behaviors
which lead the robot to the desired destination in the environment.

Although the proposed model does not use any form of path in-
tegration (e.g., odometry), the reservoir provides a short-term mem-
ory of previous inputs, making it possible that the robot maintains
an estimate of its current location for additional timesteps even in
the absence of sensory input.

The prominent characteristics of the current approach are three-
fold: no special environment landmarks are required; it works for
small mobile robots having few low-accuracy distance sensors; and
deliberative and reactive navigation components are learned with
examples of the desired sensory-motor coupling with the same hier-
archical architecture.

The experiments are accomplished with a simulation model of
the e-puck robot extended with longer-range ([5 − 80] cm) infra-
red sensors in the Webots environment. It is shown that proposed
system can learn with examples to drive a robot to a desired goal
location in simple and bigger (9 rooms) environments using only 8
low-accuracy sensors and the goal location as input.
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5.2 Related Work

In Tani and Nolfi (1999), a self-organized way of learning hierarchies
through competition of RNN experts is presented. Each RNN in a
level competes to model part of a reactive behavior during robot
navigation, so that different RNNs model different temporal seg-
ments of the sensory-motor flow. Higher level networks are trained
to predict the gate openings from lower-level networks in a slower
timescale. While its training is done online via gradient descent, our
approach uses offline linear regression (keeping the recurrent part of
the network fixed). Moreover, it only models the behavior by a
bottom-up process, that is, it can predict the next sensory input
but can not generate control actions in contrast to our RC-based
navigation architecture.

The localization reservoir in our proposed architecture has bi-
nary outputs representing the context of the robot (where the robot
came from and where it is currently located). In Tani (2003), the
parametric bias also changes in a step-wise (binary) way, and is
the sole information shared by both levels in the hierarchy. The
functional and structural aspect of our proposed hierarchical ar-
chitecture is similar to the one presented in Tani (2003) in that
a higher-level network (corresponding to our localization network)
guides the sequential execution of low-level motor primitives in the
lower-level network (corresponding to our navigation network). The
main differences is that his method is applied to a robotic arm and
training the architecture is based on back propagation through time
(BPTT). Furthermore, our approach for learning navigation behav-
iors is based on the concept of sub-space attractors which embeds
primitive reactive behaviors into linearly separable high-dimensional
sub-spaces.

5.3 Methods

5.3.1 Extended E-puck Robot Model

The e-puck robot is described in Section 4.2.1 or Appendix B.2. The
variant robot model used in the following experiments is the simu-
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Figure 5.1: Modified e-puck robot from Webots simulation environment, ex-
tended with simulated longer-range infra-red sensors capable of reading dis-
tances from 5 cm to 80 cm.

lated e-puck extended with 8 infra-red sensors which can
measure distances in the range [5-80] cm. The original simula-
tion model of the e-puck has a 5.20 cm diameter, but it increases to
10 cm when modified with the extra turret for the infra-red sensors.
The speed of the robot is limited to the interval ±[0, 300] steps/s
(or ±[0, 3.77] cm/s).

While the e-puck robot navigates in its environment using the
Webots simulator (Michel, 2004), a dataset containing sensory read-
ings, actuators (motor speeds), and current and previously visited
rooms is recorded into a Matlab environment (by process commu-
nication implemented with TCP/IP sockets). The robot controller
used to collect data is described in the following section.

5.3.2 Learning to Navigate to Goals by Demonstration

The supervised learning procedure consists of two stages as follows.

Data Generation and Collection In this stage, several exam-
ples of routes through the environment are generated, in which
the robot navigates from a starting room to a destination room
according to a predefined algorithm which uses primitive re-
active behaviors to steer the robot in different modes. All
required data for training are collected during this stage such
as: distance sensors and destination room (which will be used
as input channels); and the currently and previously visited
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robot rooms and desired motor actuators (for desired hidden
or output units).

Training The second stage involves the training of the RC networks
with the data generated in the first stage. Afterwards, the
trained RC-based navigation system can be used to drive the
robot to specific destination rooms given as input.

To actually generate examples of navigation routes, two primi-
tive reactive behaviors or navigation attractors are used to steer the
robot through different paths inside a room. They are called Left
attractor and Right attractor. Fig. 5.2 shows how these primitive
behaviors can be used in sequence to generate complete paths to
a destination room in an hypothetical environment. As a matter
of simplicity, both primitive behaviors are implemented by differ-
ent Braitenberg vehicles (Braitenberg, 1984), whose motors’ outputs
consists of a linear combination of the current sensory readings (i.e.,
a linear sensory-motor mapping). The Braitenberg vehicle which
avoids obstacles more intensely at the left side than at the right side
forms a reactive Left navigation attractor. The Right navi-
gation attractor is constructed in a similar way. These primitive
behaviors form spatial attractors since they tend to follow cyclic
sensory-motor patterns in space in static environments.

In the dynamical system space of the reservoir, sub-space attrac-
tors are formed resulting from the sensory-motor coupling which
is learned with data collected using the two primitive behaviors.
In other words, the reservoir should learn to reproduce the same
context-dependent sensory-motor coupling, where each context tran-
sition (entering a room through a specific door) causes a change
in the sensory-motor coupling (or navigation attractor). As the
reservoir-based navigation system is tightly coupled with the envi-
ronment, spatial navigation attractors once projected into the dy-
namical system space can be seen as sub-space attractors shifted
by internal and/or external context switches. Fig. 5.3 shows the
corresponding left and right sub-space attractors in a simplified bi-
dimensional dynamical system space for the sequence of spatial nav-
igation attractors shown in Fig. 5.2. Starting at room 1, the robot
gets an external input for the goal destination, indicated by the tran-
sition given by the dashed arrows, and performs a series of primitive
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Figure 5.2: Example of goal-directed navigation as a sequence of reactive navi-
gation attractors or behaviors: left attractor and right attractor. The plot shows
an hypothetical environment with 6 rooms and robot trajectories represented by
solid and dashed lines, with arrows indicating the orientation of the robot. The
two simple reactive behaviors, i.e., left and right attractors, lead the robot to
different paths in a room. Three different trajectories leading to goals 4, 5 and
6 are shown in the environment. For instance, the mobile robot reaches goal 5,
starting at room 1 and choosing: right attractor, left attractor and left attractor.
Examples of routes like these are generated for the supervised learning process.

behaviors which are fired by internal transitions, represented by solid
arrows, which ultimately lead to the final destination. For instance,
the transition r.2 g.5 signals that the robot entered room 2 from
room 1 while its destination (goal) is room 5. These internal tran-
sitions will be modeled by a localization reservoir, which predicts
the current and previously visited room. The navigation reservoir
will model the sensory-motor coupling given by navigation attrac-
tors, whose operation is modified by the guidance of the localization
reservoir. These two RC networks form an hierarchical architecture
described in the following section.

5.3.3 Hierarchical RC Architecture

The Hierarchical Reservoir Computing (HRC) controller is com-
posed of two RC networks or modules: the localization and the
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Figure 5.3: Simplistic view of navigation attractors in bi-dimensional dynamical system
space corresponding to the routes to goals 4, 5 and 6 shown in Fig. 5.2. The circle
represents the starting position of the robot, which can be in left or right attractor.
Dashed lines represent transitions between sub-space attractors in the dynamical system
space given by external input channels, while solid lines indicate transitions given by
internal hidden activity, resulting from the internal predictions of the current and possibly
the previously visited location, for instance (the transition r.2 g.4 is an abbreviation of
room 2 and goal 4, i.e., the robot is located at intermediate room 2, with room 4 as
final destination). The goal rooms are reached after a sequence of sub-space attractors,
representing simple reactive behaviors, has been performed.
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navigation modules (see Fig. 5.4). It is relevant to observe that the
localization reservoir operates at a much slower timescale than the
navigation reservoir since transitions between rooms are very spo-
radical, requiring a reservoir with slow dynamics (achieved by using
a low leak rate α) when compared to the required quick reaction of
reservoirs implementing navigation behaviors.

The learning process is divided in two stages:

1. The localization module is trained with examples of robot
trajectories to detect the current and previously visited robot
room using the controller described in last section.

2. Then, the navigation module is trained with new examples
of robot trajectories, but now using the prediction of the
trained localization module as input.

By rewriting equations (2.9) and (2.2) for the localization mod-
ule, we get:

xloc[n+ 1] = (1− αloc)xloc[n] + αlocf((Wr
i locudist[n]+ (5.1)

Wr
r locx[n] + Wr

b loc)),
yc[n+ 1] = g(Wout

c xloc[n+ 1]), (5.2)
yp[n+ 1] = g(Wout

p xloc[n+ 1]), (5.3)

where yc and yp are vectors of size nl representing the predicted
current and previous robot locations, respectively; nl is the number
of locations or rooms in the environment and g(x) is a winner-take-
all function which gives +1 for the highest input and −1 otherwise.
The other parameters and variables have the same meaning as the
ones in Section 2.2, but have new subscripts for identifying the lo-
calization reservoir.

Analogously, the equations for the navigation module are as fol-
lows:

xnav[n+ 1] = (1− αnav)xnav[n] + αnavf((Wr
i navumulti[n] (5.4)

+ Wr
r navx[n] + Wr

b nav)),
ynav[n+ 1] = g(Wout

navxnav[n+ 1]), (5.5)

where ynav is a vector with the speeds for the left and right wheels of
the robot; and umulti(t) is a concatenated input vector consisting of
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Figure 5.4: Hierarchical architecture with localization and navigation modules. The
navigation and localization reservoirs are randomly generated recurrent networks which
are not trained, but left fixed. Trainable components (or weights) are shown in dashed
lines. The sensory input feeds both reservoirs, being mapped to a high-dimensional space,
where learning occurs. The navigation reservoir receives input also from the localization
module and the target location and outputs the desired motor actuators. Stage 2 trains
the navigation module using the predictions given by the localization module, trained
in Stage 1.

the distance sensors, the current and previous predicted locations,
and the goal location

umulti(t) = [uTdist(t)yTc (t)yTp (t)uTgoal(t)]T .

The weight matrices Wout
. in Equations (5.2), (5.3) and (5.5) are

trained using linear regression as explained in Section 2.5. All other
weight matrices connecting to the reservoir are randomly generated
at the beginning of the experiment and left fixed.

5.4 Experiments

The proposed HRC architecture was evaluated in two environments.
Environment E4 is composed of three rooms connected by a central
corridor (see Fig. 5.5). A second, larger environment E5 is made of
9 rooms with open doors connecting them.

For the first environment, there are two training datasets, one
consisting of 500.000 samples (4 hours and a half of simulation time)
for training the localization module in a first step and the other one
consisting of 100.000 samples for training the navigation reservoir in
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(a) E4 (b) E5

Figure 5.5: Webots environments used for experiments. (a) Environment (165
cm × 150 cm) with 3 goal rooms and a connecting corridor. (b) Large environ-
ment (300 cm × 300 cm) with 9 rooms (goal rooms are 1, 3, 7 or 9). Dashed
lines represent boundary limits between rooms.

(a) E4 (b) E5

Figure 5.6: Samples of robot trajectories used as training examples for the
HRC controller. (a) Trajectory in E4. (b) Trajectory in E5.

a second step. These training datasets contain examples of trajec-
tories of a robot continuously going from an initial room to a target
room (see Fig. 5.6(a) for an example) - there are 6 possible routes
in environment E4.

The second environment E5 has 9 rooms and only 4 of them
will be used as starting and goal locations: rooms 1, 3, 7 and 9.
In this way, starting in one of the 4 locations, there are 12 possible
shortest (optimal) routes that the robot can follow. The training
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Table 5.1: Parameter configuration for Environment E4

Module Localization Navigation

Number of input channels ni = 8 ni = 19
Input connection fraction cri = 0.3 cri = 0.5
Input scaling υri = 1 υri = 1
Input downsampling dt = 10 dt = 5
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 400
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.98 ρ(Wr
r) = 0.98

Leak rate α = 0.01 α = 1

Number of output channels no = 8 no = 2
Output feedback to reservoir no no

datasets are also generated in the same way as before, but now
500.000 samples represent only 32 routes, which are less examples
for training than for environment E4. See Fig. 5.6(b) for an example
of robot trajectories generated with the supervisor controller.

5.5 Settings

For both environments E4 and E5, the two datasets of 500.000 and
100.000 samples were downsampled by a factor of dloc

t = 10 and
dnav
t = 5 respectively (values empirically chosen to give best perfor-

mance), resulting in two new datasets of 50.000 and 20.000 samples
for training the localization and the navigation module, respectively.
As these sampling rates are different from each other, signals from
the localization reservoir yc and yp are upsampled to the same sam-
pling rate of the navigation reservoir before they are used as input
to that module.

The parameter configuration is given in Table 5.1 for environ-
ment E4 and Table 5.2 for environment E5. Some of these parame-
ters are described in Chapter 2. At it can be seen from these tables,
the experiments on both environments use the same parameter con-
figuration, except for the number of outputs no of the localization
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Table 5.2: Parameter configuration for Environment E5

Module Localization Navigation

Number of input channels ni = 8 ni = 30
Input connection fraction cri = 0.3 cri = 0.5
Input scaling υri = 1 υri = 1
Input downsampling dt = 10 dt = 5
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 400
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.98 ρ(Wr
r) = 0.98

Leak rate α = 0.01 α = 1

Number of output channels no = 18 no = 2
Output feedback to reservoir no no

module, and the number of inputs ni for the navigation reservoir.
For environment E5, nloc

o = 18 (9 units for previously visited room
and 9 for the current room) and nnav

i = 30 (18 from the localization
module + 4 goal inputs + 8 distance sensors). Parameters α and
dt were found by a grid search in the case of the localization mod-
ule (offline testing), and empirically in the case of the navigation
module (online testing by trial and error).

5.6 Results

The localization performance on test data, consisting of 50.000 sam-
ples downsampled to 5.000 timesteps, is shown in Fig. 5.7. It can
correctly detect the current robot room 97.5% of the time and the
previously visited room 97.8 % of the time (this result is consistent if
different randomly generated reservoirs are considered). Examples
of the successful trajectories generated by the HRC system after
training are shown in Fig. 5.8. The robot starts in one of the rooms
in a position indicated by a circle and navigates to the goal room
(given as input) with the end position represented by a small cross.
The trajectory is drawn such that its color incrementally changes
from green to blue, representing the progress of the navigation. In
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Figure 5.7: Performance results of the localization module in environments E4 and E5.
Predicted locations are represented by black points whereas solid grey lines are the true
robot location. Black crosses represent mistakes.

Fig. 5.8(c), it is shown that the trained system can easily recover
from a kidnapping event. The robot started at room 1 and aimed
at room 3 as a goal. After reaching room 3, its goal changed back
to room 1, but few timesteps later it was kidnapped to room 2. It is
possible to see that although it was displaced to another room, the
robot was able to drive successfully to its destination (goal room 1),
showing that it correctly recognizes the room the robot is located
at, which in turn, affects the operation mode of the sensory-motor
coupling of the navigation reservoir. This result is consistent across
multiple trials and experiments. In 63 routes that were evaluated,
the HRC controller has been able to successfully drive the robot to
the destination room in all cases without any collision.

The localization performance on test data for environment E5 is
shown in Fig. 5.7(c). The system can detect the current and pre-
viously visited room 96.33% and 93.63% of the time, respectively.
An example of a successful trajectory in environment E5 is shown
in Fig. 5.9(a). The robot, driven by the HRC controller, starts at
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(a) (b)

(c)

Figure 5.8: Trajectories for robot driven by the HRC controller in environment
E4. (a) Robot starts at room 1 and goes to room 3. (b) Robot starts at room
3 and goes to room 2. Starting and ending positions are marked with a circle
and a cross, respectively. (c) The robot drives from room 1 to goal room 3. In
room 3, its goal changes back to room 1, but it is kidnapped to room 2 after few
timesteps. The trajectory shows that it recovered nicely from the kidnapping
once it drove directly back to room 1.

room 1 and reaches room 7 successfully. In 15 out of 23 runs, the
robot was able to follow the optimal (shortest) path to its goal. In
all 23 runs it was able to complete the task. Task completion means
that the robot reaches the goal location, being acceptable that dur-
ing navigation it takes a wrong decision and then goes back to the
correct path (see Fig. 5.9(b) for an example). This also shows that
the HRC controller is robust to noise and unpredictable situations
since it is able to reach the destination even though the robot looses
itself for a moment when it mistakenly enters a room outside the
shortest path. A summary of the experimental results is given in
Table 5.3.

It is important to observe that most of the errors of the localiza-
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(a) Start 1 - Destination 7 (b) Start 7 - Destination 1

(c) Start 9 - Destination 1 (d) Start 1 - Destination 3 and Start 3 -
Destination 9

Figure 5.9: Trajectories for robot driven by the HRC controller in environment E5.
Starting and ending positions are marked with a circle and a cross, respectively. (a)
Starting at room 1 and going to target room 7 via rooms (2 → 5 → 8) (optimal path).
(b) Starting at room 7 and going to target room 1 via rooms (8→ 5→ 4) (optimal path).
(c) Starting at room 9 and going to target room 1 via rooms (8→ 7→ 8→ 5→ 4) (task
completion). (d) Two routes: Starting at room 1 and going to target room 3 via room 2;
and starting at room 3 and going to target room 9 via room 6.

Table 5.3: Performance Results in Number of Trajectories

Shortest Path Task completion

Environment E4 63 out of 63 (100%) 100%
Environment E5 15 out of 23 (65%). 100%

tion module are made at the transitions between one room and the
following one. These errors represent a temporary confusion, which
is better than a permanent mistake. Although navigation does not
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start in intermediate rooms in environment E5 during testing, it
is expected that the robot can reach any goal location regardless
of its initial position as long as the same sub-route appears during
training. Generalization has been tested to the extent of the kid-
napping event. Future work should confirm that the trained system
can avoid dynamic unseen obstacles during testing while reaching
the desired goal locations. This generalization capability is expected
to work with the proposed architecture once it has been shown that
reservoir architectures can learn and generalize obstacle avoidance
behaviors (Chapter 3).

5.7 Conclusion

This chapter has proposed an hierarchical HRC architecture, com-
posed of localization and navigation RC networks or modules. The
localization module constructs an internal model of the environ-
ment from a set of 8 low-accuracy distance sensors which is used by
the navigation module to steer the robot through the environment.
These networks are trained under a supervised learning framework,
which collects data using a supervisor controller (a program or a
human supervisor) which generates a series of examples of trajecto-
ries from a start room to a destination room. The resulting trained
HRC controller is able to perform goal-directed navigation in simple
and complex simulated unstructured environments, without the use
of odometry and based only on the learned implicit model of the
environment.

In this chapter, more complex model-based sensory-motor cou-
pling is achieved by combining the results of two previous chapters.
The RC network responsible for localizing the robot in its environ-
ment (the focus of Chapter 4) can guide the selection of navigation
behaviors or attractors implemented by another RC network (the
focus of Chapter 3). Therefore, by making the navigation module
aware of the context of the robot, i.e., where the robot is and where
it came from (apart from the goal given as external input), it is able
to generate a sequence of navigation attractors, defined by a reac-
tive sensory-motor coupling, which lead the robot to the destination
room. Actually, additional experiments (not shown in this chapter)
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have proved that the prediction of the previously visited room is
very important for successful trajectories towards the destination
room.

The navigation module integrates different sources of informa-
tion such as from the distance sensors, the output of the localiza-
tion module and the goal location, being able to produce behaviors
which contain reactive (obstacle avoidance) and deliberative (deci-
sion making) components.

The different modules in the HRC architecture operate at dis-
tinct timescales for agile processing of low-level sensory-motor be-
haviors as well as for slow processing of higher-level concepts such
as environmental rooms. This is achieved by setting the leak rate of
each reservoir to values appropriate for the respective task or skill
which it implements, such as localization (slow timescale given by
a low leak rate) and navigation (fast timescale given by a high leak
rate) (relevant works such as (Yamashita and Tani, 2008) also elab-
orate on a hierarchy of slow and fast networks for humanoid robot
skill learning).

The current method requires no special landmarks to be placed
in the environment and works with inexpensive small mobile robots
which have few noisy infra-red distance sensors. Although the envi-
ronment rooms appear to be different in shape from each other, it
has been show that the localization performance is not deteriorated
if the environment has multiple symmetric rooms (Antonelo et al.,
2008a) (Chapter 4). In this case, eventual confusions, i.e., misclas-
sification of rooms, are not permanent since a short time interval is
enough for recovering or correct room recognition.

The supervised learning process requires the labeling of envi-
ronmental rooms in the training data. This labeling becomes an
undesirable work if it is not automatically done. What if an RC-
based network is able to autonomously construct implicit abstract
environment representations based on raw data from few noisy dis-
tance sensors of a small mobile robot? This is the focus of Chapter 7.
Although that chapter does not show experiments on goal-directed
navigation, it extensively analyses the properties of the architecture
in simulated and real environments.

Goal-directed navigation could be learned in a more realistic
way under the reinforcement learning framework. The challenge is
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to deal with sensor-aliasing problems, non-Markovian environments,
continuous state spaces, continuous action space and so on. A first
attempt is given in Chapter A which uses primitive discrete be-
haviors to learn context-dependent navigation attractors in simple
environments.

The localization module of the architecture predicts locations
based on input from distance sensory readings. Next chapter will
focus on generative modeling of environments and robot behaviors,
and it shows that it is possible to predict the distance sensors given
the robot location as input. Not only that, also robot behaviors
can be autonomously simulated, without feedback from the envi-
ronment.





6
Generative Modeling of

Environment-Robot Dynamics

Previously, an implicit spatial representation of an environment has
been learned through the projection of the sensory input into the
high dimensional space of the reservoir. These RC networks learned
forward models of the robot by predicting the position from the sen-
sory signals. In this chapter, it is shown that these implicit maps
can be made explicit, by running the RC network in reverse: predict
the local sensory signals given the location of the robot as input
(inverse model). Furthermore, a Generative RC architecture is pro-
posed, which trains all sensory and localization nodes. With this,
it is possible to autonomously (without interference from the en-
vironment) generate a predictive sequence of sensory signals and
locations, which can be observed at the generative nodes and used
to predict the future outcome of robot behaviors. This closed-loop
simulation provides a way to internally go through navigation expe-
riences, without actually experiencing with the physical robot body
itself (such as dreaming), which characterizes a typical planning-like
ability.

6.1 Introduction

In order for a mobile robot to become aware of its environment
and the possible places which it can be reached by autonomous
navigation, it is necessary to create implicit environment models
and planning mechanisms which can be efficiently simulated before
real execution of the plan is accomplished.
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Chapter 4 has shown that an RC network can perform robot lo-
calization in complex, dynamic environments using a limited number
of distance sensors with low-accuracy, and with a restricted amount
of computational power. These RC networks learned forward mod-
els of the robot which predict the robot position given the sensory
signals as input (Fig. 6.1).

In this chapter, it its shown that the same type of RC networks
can be used in reverse by predicting local sensory signals from the
location of the robot as input, characterizing the learning of an
inverse model (Fig. 6.1). This new learning scheme enables the
generation of explicit maps of the robot environment which
were implicitly learned in previous chapters.

By simultaneously learning forward and inverse models using a
single generative RC network which predicts both the sensory signals
as well as the position of the robot, it is possible to generate future
scenarios of a specific navigation behavior by autonomous simulation
of the network in closed loop mode, i.e., without interference of the
environment. In this way, navigation trajectories can be internally
simulated without actually having to experience them in the actual
environment, in a way similar to dreaming, which ultimately leads to
potential applications in path planning. This internal simulation
scheme is also speculated in a cognitive point of view in Germund
and Hesslow (2002) to happen in mammals, where chains of behavior
and perception could be internally simulated (inside the brain).

In addition, a higher-level navigation system can be built with a
scheme where the decision module considers these long-term predic-
tions as relevant input. This can be accomplished by modeling sev-
eral simple reactive behaviors and internally generating long-term
expectations for each one in order to switch to the most appropriate
behavior at some point in time.

Learning an inverse model with a generative RC network is very
useful, for instance, when sensors get broken or occluded. If these
faulty sensors can be detected, then their values can be predicted
based on the learned inverse model which can predict sensory sig-
nals given the position of the robot (and possibly other non-faulty
sensors). In this way, fault-tolerant localization systems are made
possible through the use of self-predicting sensory nodes in the gen-
erative RC architecture.
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Figure 6.1: Forward and inverse models of a mobile robot. Previous chapters
which use RC networks for localization have learned the forward model of the
robot, which estimates positions from sensory signals. In this chapter, it is shown
that generative RC networks can learn the inverse model as well, that is, they
can estimate the sensory signals from the position of the robot.
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Figure 6.2: Generative Reservoir Computing (GRC) architecture. Input and
output nodes become generative output nodes in the GRC architecture. All
these generative nodes can be trained via teacher forcing, and afterwards, used
to predict either the original input signal (i.e., distance sensors) or environment
features such as the robot position.

6.2 Generative Reservoir Computing

Still under a supervised learning framework, Generative Reservoir
Computing (GRC) enables the creation of a long-term memory by
implementing closed loops between output nodes and reservoir. All
nodes of the GRC architecture are called here generative output
nodes (see Fig. 6.2). These nodes are trained via teacher forcing,
i.e., information from the environment is written into these out-
put units as if they were input units (Fig. 6.3(a)) (see Section 2.5
for more details). Teacher forcing is typically accomplished during
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Figure 6.3: Operation modes of the GRC architecture. (a) Training the GRC ar-
chitecture occurs by teacher forcing all units, i.e., by stimulating the reservoir with the
external feedback (sensors, locations) from the environment as if they were input nodes.
(b) Simulation of the GRC architecture can be done by feeding back the sensors from the
robot and predicting the location as output, feeding back the location of the robot and
expect the distance sensors as output, or optionally feedback any sub-set of the nodes
and predict the missing information at the other nodes. (c) Internal simulation of the
GRC architecture (or free-run mode), by cutting all feedback from the environment, and
letting the network autonomously generate perceptions and path plans, by using only
predictions of the network as the next input to the reservoir.

training, but it can be used after training as well. The non-teacher
forced outputs operate in free-run mode, which means that they
self-predict their next values which, in turn, are fed back to the
reservoir. Thus, after training, units in free-run mode generate a se-
quence of predictions in a closed loop, which disregards interference
from the environment.

Fig. 6.3(b) shows the GRC architecture after training, where
some output nodes can be connected in a closed loop so that they
feedback their self-predictions, whereas other nodes may still be used
as inputs via teacher forcing. If the location is predicted and the
sensors are teacher forced, the GRC architecture models the forward
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model in Fig. 6.1. If the location is teacher forced and the sensors
are predicted, the GRC architecture models the inverse model in
Fig. 6.1.

Fig. 6.3(c) shows the GRC architecture when all loops are closed
for free-run mode operation, so that no external inputs stimulate the
reservoir via teacher forcing but only the self-predictions generated
by the reservoir itself at the output nodes. By training this architec-
ture with a sequence of samples containing distance sensory readings
and the actual robot position (generated by an arbitrary controller),
after training it can autonomously regenerate the sequence of sen-
sory readings of the robot and its respective position by letting all
nodes self-predict themselves in a closed loop (free-run mode). This
ultimately leads to modeling of reactive behaviors which can be used
for path planning, as it will be described later in this chapter.

6.3 Generative Modeling of Maps

In the location detection task (Chapter 4), an RC network is used
to predict the robot location given distance sensors as input. It
thus constructs an implicit map of the environment that is used
for localization. Here the reverse problem is considered, that is,
given the robot position as input, the reservoir has to predict the
expected sensory input, by turning off the environment feedback
only for the sensory nodes in Fig. 6.3(b). In this way, by driving the
robot in the environment and recording its pose sequence, the RC
network can be trained for generating a map of the environment (or
the local sensory perceptions of it). The learned implicit map can
thus be made explicit, which is useful for evaluating the localization
properties of RC-based systems. The learning task considered here is
analogous to the modeling of the inverse model of the environment-
robot dynamics (Fig. 6.1).

It will be shown that not only the continuous-valued robot’s pose
(x, y coordinates and heading) can be used for generating maps,
but also higher-level locations represented by a binary vector (see
Section 4.1.1 for more details on different types of locations).

The two environments in Fig. 4.7 from Chapter 4, long T-maze
(S4) and complex room environment with dynamic obstacles (S5),
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Table 6.1: Parameter configuration for map generation

Model (Env.) SINAR (S4) SINAR (S5)

Number of input channels ni = 3 ni = 3
Input connection fraction cri = 0.4 cri = 0.5
Input scaling υri = 0.4 υri = 0.6
Input downsampling dt = 30 dt = 50
Input to output connections yes yes

No bias

Reservoir size nr = 400 nr = 800
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.9 ρ(Wr
r) = 0.9

Leak rate α = 1 α = 1

Number of output channels no = 17 no = 17
Output connection fraction cro = 0.4 cro = 0.3
Output feedback scaling υro = 0.4 υro = 0.025

are used for the experiments in this chapter. Both environments
contain stochastic aspects which make the robot controller generate
diverse random trajectories. A description is given in Section 4.4.3.1.

6.3.1 Settings

The parameter configuration for map generation is given in Ta-
ble 6.1. It basically uses the same parameters as for the pose es-
timation task, shown in Section 4.4.4.1 from Chapter 4 for both
environments S4 and S5, except for the following changes. The in-
puts to the reservoir are the normalised robot coordinates (x, y)
and heading (θ) whereas the readout output layer, which has feed-
back connections to the reservoir, is composed of no = 17 output
nodes, corresponding to the distance sensors of the robot. Addi-
tionally, the downsampling used for the map learning experiments
is made through decimation, i.e. taking 1 sample every n timesteps
(so, leaving out n-1 samples), so that corners are better represented
(otherwise the map is inconsistent). The influence of adding color
information as input to the network will also be analyzed.
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Figure 6.4: Original and predicted maps for long T-maze (S4) from Fig. 4.7.
Black points represent the sensory readings whereas gray points are the robot
position. (a) the real noisy map as seen by the robot. (b) the map generated by
the RC network after training given the robot coordinates and heading as input.

6.3.2 Results

The maps are built by moving the robot according to the pre-
recorded test data from the simulator and plotting the predictions of
the distance sensor readings from the robot’s local coordinate system
(see Fig. 6.4). The maps for the test data are generated by running
the RC network for 1,300 and 2,000 timesteps for environments S4
and S5, respectively.

For the long T-maze environment, the generated map (Fig. 6.4(b))
is very similar to the real map. Good performance is also achieved
for the more complex maze environment (Fig. 6.5) considering ei-
ther the robot coordinates or the locations as input (the maps are
very similar).
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(a) Noisy Map as seen by the robot’ sen-
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(c) Map generated from discrete loca-
tions

Figure 6.5: Real and predicted maps for complex room (S5) from Fig. 4.7. Black points
represent the sensory readings whereas gray points are the robot trajectory. (a): the real
noisy map. (b): the map generated by the RC network trained with the map in (a) (the
input to the reservoir is the robot’s pose x, y, θ). (c) the generated map considering the
more abstract location as input.

The map generation is performed by stimulating the reservoir
with the normalized continuous-valued robot coordinates (and head-
ing) or the binary vector of locations; and collecting the expected
sensory readings.

The robot trajectory follows a dynamics which is probably used
by the reservoir for map generation. In order to find out how the
trajectory dynamics is related to reservoir performance, a new ex-
periment was setup with environment S4 by placing four additional
attractive objects at the longest corridor. The dashed arrows in
Fig. 6.7(a) indicate the positions of attractive objects. Gaussian
noise is also added to motor output. Thus, the robot trajectory is
diversified with these new changes.
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Figure 6.6: Original (non-noisy) map with more irregular and random robot
trajectories for the long T-maze (S4). The dashed arrows indicate the position of
attractive objects, with only one randomly chosen to be visible at a time (until
the robot captures it, when it disappears and a new one is made visible); see
Section 4.4.3.1 for more details.

The map in Fig. 6.7(a) is built from 2,800 samples. The noisy
version of the map used for training (Fig. 6.7(b)) and correspond-
ing predictions (Fig. 6.7(c)(d)) are constructed from 750 samples.
If the reservoir only considers distance sensors as input (ignoring
color sensory data), the irregular trajectories in the long corridor
cause the miss-prediction in the form of displaced wall segments
(Fig. 6.7(c)). By considering the additional color information which
is self-predicted by the reservoir during map generation (see archi-
tecture in Fig. 6.8), the generated map is significantly improved and
no shifted walls are present (Fig. 6.7(d)). Therefore, it is necessary
that the network models extra information from the environment
(such as the color sensor stream) in order to cope with complex
stochastic trajectories in the map generation task. Note that the
process of including new information into the prediction model is
straightforward, requiring just the addition of more generative sen-
sory outputs which are teacher-forced during training (but are self-
predicted after training).

6.4 Planning with GRC architecture: Path Generation

So far, RC networks have been used for both position detection
and map generation with the same reservoir configuration, but not
with the same network. This section presents an interesting setting
in which a single GRC architecture operates completely in free-run
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Figure 6.7: Map generation using the trajectories from Fig. 6.6. (b): the map, as seen
by the noisy sensors of the robot, used for training (noise added fromN(0, 9)d.u.). (c): the
map generated by GRC network excluding color sensory data (teacher forced output:
robot’s pose; output in free-run mode: distance sensors). (d): the map generated by GRC
network considering color sensory data using architecture from Fig. 6.8 (teacher
forced output: robot’s pose; output in free-run mode: distance and color sensors).
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Figure 6.8: Simulation of the GRC architecture with distance and color sen-
sors units in free-run mode, whereas the robot’s pose x, y, θ is teacher-forced to
generative output units.

start
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Figure 6.9: From navigation in real environment to free-run simulation mode.
Before autonomous simulation is initiated, the robot starts navigating in the
actual environment until it stops and begins internal simulation of path plans.
The reservoir is stimulated since the start of the navigation and, by the time
the robot stops, the reservoir continues in free-run mode (without feedback from
the environment) considering the last state it was before starting in this new
operation mode. Thus, internal simulation starts from a situated point in the
physical environment.

mode after training, as shown in Fig. 6.3(c), simultaneously acquir-
ing localization and map generation capabilities. With this setting,
the network predicts a sequence of sensory perceptions of the envi-
ronment and the respective position of the robot, which can be used
to predict the future outcome of a robot behavior and its environ-
ment. Fig. 6.9 presents a high-level example of how this can be used
to internally predict the trajectory of the robot after stopping it in
the real environment at some point.
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Table 6.2: Parameter configuration for path generation

Model (Env.) SINAR (S4)

Data downsampling dt = 30
No bias

Reservoir size nr = 700
Reservoir connection fraction crr = 1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 1

Number of generative output channels no = 20
Output connection fraction cro = 0.4
Output feedback scaling υro = 0.5

6.4.1 Settings

The RC network is configured as in Table 6.2 for the experiments
in this section. The readout layer has no = 20 generative output
nodes (17 for distance sensors plus 3 for normalised robot coordi-
nates and heading). The noise in the state update equation during
the generation of the matrix X with the harvested reservoir states
is given by the Gaussian distribution N(0, 0.0001) (see Sections 2.5
and 2.6 for more details).

6.4.2 Results

The experiments are accomplished in the long T-maze environment
S4. The robot navigates continuously through this environment us-
ing the controller from Antonelo et al. (2006), capturing targets
which are positioned at the 3 corners of the maze, with only one
visible at a time (see Fig. 4.7), while its sensors and position are
recorded. The resulting dataset (the same as previous section) con-
tains 3,600 timesteps after resampling. The RC network is trained
with the first 2,400 timesteps. Then, the initial state of the reservoir
is set to the state it was at the final timestep 2,400 of the training
dataset.

After that, the reservoir operates in free-run self-predicting mode,
where every network output is fed back to the reservoir. In other
words, the robot navigates physically for 2,400 timesteps in the envi-
ronment and then it autonomously simulate its trajectory in the en-
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vironment (including the local sensory perceptions) using the GRC
network. Fig. 6.9 gives an example of how this procedure is ex-
ecuted. As the output is not teacher-forced, the reservoir is free
to develop its own dynamics. The results are shown in Fig. 6.10.
The first plot shows the predicted robot position whereas the second
one corresponds to the autonomously generated map. As it can be
observed, the predicted robot trajectory follows a cyclic dynamics
as if the robot was capturing each target in a predefined sequence.
Probably this sequence is the most relevant in the training dataset.
The generated map shows that the long corridor is well rebuilt while
the corners are more difficult to reconstruct due to the fast turning
behavior at these locations.

This chapter demonstrates that a single RC system is able to
both model the environment and generate trajectories and envi-
ronment perceptions in a free-run fashion. These capabilities are
processed by a single recurrent neural network without any rule-
based mechanism or higher-order technique. On the other hand,
this neural network model could be used by some more abstract
decision-based system, for instance: for making future predictions
on the robot’s path and environment if a certain behaviour is cho-
sen from some point on (in this case a behavior would be an input
channel to the GRC network).

Although the term might seem quite colloquial this can be un-
derstood as if the robot was dreaming about its environment and its
associated reactive behaviour (see Germund and Hesslow (2002) for
a well described, cognitive-based hypothesis on this subject which
applies for mammals in general). Furthermore, this can be achieved
with a system that is biologically plausible (Yamazaki and Tanaka,
2007), which allows us to speculate on whether simpler animals could
possess this capability for short-term predictions (or anticipation)
of their actions in their environment1.

1According to Rosen (1985), all living organisms are anticipatory systems,
which means that they can predict the future state of the environment with
predictive models disregarding the existence of a mental process.
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Figure 6.10: Path generation in free-run mode, without environment feedback. The
RC network predicts both robot position and the sensory readings (there is no teacher
forcing during prediction). (a): the predicted robot position. (b): the corresponding
generated map (black points are the sensory readings and gray points are the predicted
robot trajectory).
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Figure 6.11: Comparison of RC and GRC architectures in a robot localization
task in environment S5 when sensors get broken. The dashed line is the average
error using the standard RC network whereas the solid line represents the average
error using the generative GRC architecture which predicts the value of broken
sensors.

6.5 Fault-tolerant Localization

This section presents a way of improving the robustness of RC-
based location detectors (from Chapter 4) against faulty or broken
sensors. In order to achieve a fault-tolerant localization system, a
GRC network must be trained to predict not only the locations,
but also the sensory readings. Assuming that faulty sensors can be
detected, then the sensory nodes which present malfunction will be
replaced by self-predicted values.

In Fig. 6.11, a normal RC-based pose estimator (dashed line)
is compared to the GRC-based pose estimator which predicts the
values of the faulty sensors (solid line). Note that the vertical axis
of the plot is in a logarithmic scale. The task of pose estimation
(x, y, θ) is accomplished using environment S5 and the same param-
eter configuration as described in Section 4.4.4.1. Each experiment
is executed 20 times, where the broken sensors are randomly chosen
for each test dataset. This is done by setting their outputs to zero
(in the case of the standard RC-based estimator). As the number of
broken sensors increases, the localization performance of the usual
RC network deteriorates notably but gracefully. On the other hand,
the generative setting of the GRC network which predicts the val-
ues of broken sensors can cope very well with the missing sensory
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information.

6.6 Conclusion

The Generative Reservoir Computing (GRC) architecture can pre-
dict any sensory, motor, or high-level concept by training all gener-
ative output nodes using teacher-forcing (stimulating the reservoir
with the desired signal through the output nodes). During testing,
the output nodes can serve as input units by teacher forcing the
signal from the environment while other nodes can feedback their
self-predictions into the reservoir. Using this approach, locations
can be predicted from sensory readings (forward model) as well as
sensory readings can be predicted from locations (inverse model).
A GRC-based localization system can even tolerate to a great ex-
tent missing information from faulty sensors, when the prediction
of these sensors are used instead.

When all output nodes of the GRC architecture feedback their
self-predictions into the reservoir, thus disregarding signals from the
environment, it is possible to explicitly see that the network em-
bedded the navigation behavior of the robot during training. The
internal simulation of a sequence of local environment perceptions
and robot positions reveal a reactive navigation attractor which can
be used to predict future scenarios of a specific robot behavior in
the current environment.

Chapters 3 and 5 show that multiple navigation attractors can
be embedded in the same RC network. External input channels or
even hidden units from another (localization) network can be used
to change the behavior of the RC navigation network. By converting
this network into a generative GRC network, it is possible to gen-
erate path plans not only of one behavior but of multiple different
behaviors. In a environment where rewards are given for each time
the robot reaches a room in a predefined sequence, it is possible to
train a GRC network with an extra output unit representing the
reward, so that, during testing, it is able to perform path planning
(by internal simulation of different reactive behaviors) and find the
rewarded route.

A problem observed during map generation is that fast turning
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behavior is not well captured by the RC network. The local envi-
ronment perceptions close to these areas of fast turning are not well
enough predicted (note the malformed corners of the long T-maze,
mainly with respect to the experiment of path planning). This may
be caused by resampling artifacts, or even by the lack of diversity
of timescales in the reservoir. Future work could be done to im-
prove this by either using a reservoir with multiple leak rates or two
disconnected pools of neurons in the reservoirs each one with a dif-
ferent leak rate (for enabling the generation of uncorrelated signals
of different frequencies).

In this and all previous chapters, the training of RC networks
has been done in a supervised way. Next chapter covers the unsuper-
vised learning of RC networks using a fast and efficient method for
training the linear readout output layer, called Slow Feature Analy-
sis. With this, sensor-based environment representations emerge in
a self-organized way which can be used to localize small robots in
unknown, unstructured environments.





7
Unsupervised Learning for

Robot Localization

In order to achieve a higher degree of autonomy in the learning
process of RC-based navigation systems which use implicit learned
models of the environment for goal-directed navigation, this chapter
tackles the unsupervised learning of these implicit models. Thus, un-
like previous chapters, labeling training data with the robot location
is not required in this chapter. To this end, a hierarchical archi-
tecture is proposed which has the reservoir as a temporal non-linear
kernel in the first layer, and an upper layer which is trained using the
technique called Slow Feature Analysis (SFA). SFA is able to learn
invariant or slowly varying output signals from a given input signal
in an unsupervised way. It is shown experimentally in this chap-
ter that the proposed RC-SFA architecture is empowered with an
unique combination of short-term memory and non-linear transfor-
mations which overcomes the hidden state problem present in robot
navigation tasks. In addition, experiments with simulated and real
robots indicate that spatial activations generated by the trained net-
work show similarities to the activations of CA1 hippocampal cells
of rats (a specific group of neurons in the hippocampus).

7.1 Introduction

Most reservoir computing models use supervised learning schemes
to train the readout output layer. In this case, linear regression is
the standard technique used for output training (Jaeger and Haas,
2004). However, biological systems probably learn a great number
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of tasks in an unsupervised way.
Slow Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) is

an unsupervised learning method based on the concept of slow-
ness. It extracts invariant or slowly-varying representations of a
high-dimensional input signal, and has been shown to be able to
model properties of complex cells from the primary visual cortex
V1 (Berkes and Wiskott, 2005). As SFA only learns linear map-
pings from an input signal, a non-linear quadratic expansion of the
original input signal is typically accomplished before SFA is applied.

In this chapter, a hierarchical architecture is proposed, where
the first layer comprises an (usually sparsely connected) non-linear
recurrent network with fixed weights (the reservoir), and the second
layer consists of SFA units. The short-term memory of the reservoir
and its non-linear projection in conjunction with such an unsuper-
vised learning technique yields a model which possesses advantages
from both theoretical models: the inherent spatiotemporal process-
ing capabilities of the reservoir as well as the slowly-varying hidden
signal extraction of the SFA model. I call the proposed architecture
the RC-SFA model.

The slowness extraction mechanism present in SFA allows that
high-level concepts, such as the position or orientation of a subject
inside a room, which are slowly varying in time, be generated from
low-level fast-varying stimuli like vision. In the same way, the loca-
tion of a mobile robot inside an environment can be predicted from
vision, but also from distance sensors, for instance.

This chapter shows that, using the proposed RC-SFA model,
small mobile robots are able to learn to self-localize in simulated
and real environments in an unsupervised way based only on few
noisy infra-red distance sensors and no proprioceptive inputs (e.g.
disregarding odometry signals or path integration). The network
receives the raw low-dimensional input signal, which is projected to
a high-dimensional, dynamic reservoir space, used by the SFA layer
to generate spatially dependent representations of the environment.
The activation of SFA units is spatially non-localized (they exhibit
low-place selectivity), that is, after training, they exhibit high activ-
ity for multiple locations of an environment. A second step is neces-
sary for producing units which are only active for no more than one
location, exhibiting high-place selectivity. In Franzius et al. (2007a)
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an additional post-processing step using Independent Component
Analysis (ICA) is applied for learning sparse representations from
SFA units. Similarly, the proposed RC-SFA model uses ICA in the
third layer as the second step for generating localized representa-
tions of a robot environment. The complete architecture is shown
in Fig. 7.1.

Experiments with rats in open fields have shown the existence
of hippocampal place cells. These cells form an implicit spatial rep-
resentation of an animal’s environment, firing whenever the rodent
is located at a particular location (O’Keefe and Dostrovsky, 1971;
O’Keefe, 1976; Moser et al., 2008), which defines the place field of
the cell. The biological inspiration to RC-based localization systems
and further information on hippocampal place cells and other types
of spatial encoding cells are presented in Section 1.2.4.1.

Although the majority of the existing place cell models are not
dependent on the animal’s direction of movement, there are few
experiments showing that place cells exhibit movement-related firing
patterns such that the environment configuration and the animal’s
behavior can impose a directional structure in the firing of place
cells (Eichenbaum et al., 1999). In Brunel and Trullier (1998), it
is proposed that place cells are intrinsically directional and that
invariance to direction is achieved through generalization. In Frank
et al. (2000), using a constrained environment for rats such as W
tracks, it is shown that hippocampal CA1 cells and entorhinal cortex
(EC) cells code for spatial information on a way dependent on the
rat’s path or behavior. It assumes that, if the hippocampus and
EC are related to path planning over extended trajectories, these
structures should reflect where the animal intends to go or where
it has come from. Similarly, the proposed RC-SFA architecture in
this work encodes positional information on a path-dependent way,
where the SFA layer and ICA layer exhibit an activation pattern
comparable to that of EC cells and hippocampal CA1 cells found in
Frank et al. (2000), respectively.

The current work is inspired by the fact that whiskers of rodents
can provide relevant information about the environment and shape
of objects (Solomon and Hartmann, 2006). In the same way, the
experiments in this chapter are based on a small mobile robot which
perceives the environment through a limited number of short-range
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distance sensors. This work assumes that the low-dimensional input,
such as whiskers for rats or distance sensors for robots, can provide
interesting information from the environment.

7.2 Related works

It has been shown in Franzius et al. (2007a) that a hierarchy of SFA
layers with increasing receptive fields at upper layers and a top ICA
layer can be trained to code for either the rat’s position or the rat’s
head direction depending on the movement pattern of a simulated
rat. Their model is based on the high-dimensional input from a
camera which simulates the 320o field of view of the rat. Simple en-
vironments such as linear tracks or rectangular arenas with distinct
textures set for each wall make it possible to infer the rat’s position
from a single image. The similarities between their model and the
one proposed in this paper refer to the layers which learn by SFA
and ICA. The main differences are that the proposed model uses a
dynamic reservoir at the first layer, which projects a low-dimensional
input into a high-dimensional non-linear space and which proved to
be essential for learning spatial representations with such a small
number of distance sensors. Moreover, the proposed model copes
with sensor aliasing, where multiple environmental states map to
the same perceptual sensory input. This means that it is not suffi-
cient to consider only the current time step to determine the robot
location, but the history of the input stream - a property which the
reservoir naturally has.

In Wyss et al. (2006), a cortical hierarchy of layers is proposed
which learn by optimizing an objective function that takes into ac-
count temporal stability and temporal decorrelation between units.
All units are leaky integrators providing them with a local memory
trace. Their method is similar to Slow Feature Analysis in the sense
that it maximizes temporal stability or slowness of the output sig-
nal. However, their learning method is iterative and, as so, prone
to convergence to a local optimum (unlike SFA). Their experiments
are made with a mobile robot driving randomly in a rectangular en-
vironment with predefined cues. The continuous stream of a 16x16
pixel image feeds the architecture which, after learning, shows prop-
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Table 7.1: New variables used in this chapter

ySFA output of SFA units
yICA output of ICA units
WSFA Connection matrix for SFA units
WICA Connection matrix for ICA units
nSFA number of SFA units
nICA number of ICA units

erties of hippocampal place cells.
The SFA algorithm has also been used as the training method

of a linear readout output layer of reservoirs of spiking neurons in
Klampfl and Maass (2009). They show that these linear readouts
can learn to discriminate isolated spoken digits in an unsupervised
way.

7.3 Methods

7.3.1 RC-SFA architecture

The proposed RC-SFA architecture is composed of a hierarchical
network of nodes where the lower layer is a reservoir and the upper
layers are composed of SFA and ICA units, respectively (Fig. 7.1).
This hierarchical network learns in an unsupervised way. The func-
tion of the reservoir is to map the inputs to a high-dimensional
dynamic space. Because of its recurrent connections, the reservoir
states contain echoes of the past inputs, providing a short-term
memory to the model. The SFA layer receives signals from the
input nodes u[n] and from the reservoir nodes x[n]. This layer gen-
erates invariant or slowly varying signals (Wiskott and Sejnowski,
2002) which are instantaneous functions of input from previous lay-
ers (see Section 7.3.2). The upper-most layer is composed of ICA
units which generate a sparse and local representation, as in sparse
coding1, of the slowly varying SFA features. The following sections
focus on these upper layers, while Table 7.1 presents a list of new
variables related to the RC-SFA architecture.

1Sparse coding is the representation of items by the strong activation of a
relatively small set of neurons (Foldiak and Endres, 2008).
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Figure 7.1: RC-SFA architecture. The reservoir is a recurrent network where the
inputs are mapped to a high-dimensional non-linear space. The resulting reservoir tra-
jectory, generated by input stimulation, is used for training the SFA layer, which extracts
instantaneous slowly-varying signals from the reservoir after learning. The subsequent
ICA layer implements sparse coding on the SFA outputs, extracting independent compo-
nents from the SFA activation. Training is unsupervised and takes place for the dashed
connection lines in the figure. Solid lines represent fixed randomly generated weights.
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7.3.2 Slow Feature Analysis

Most sensory input signals vary at a fast timescale, even though the
environment properties may be slowly varying. This is because sen-
sors provide low-level representations of environment features and
are prone to fast signal variations, e.g., a human moving inside
an office produces fast visual input variation while his/her posi-
tion in the building changes slowly. Slow Feature Analysis (SFA)
(Wiskott and Sejnowski, 2002) is an algorithm which finds output
functions gi(x(t)) which maximize temporal slowness, given a high-
dimensional input signal x(t). It extracts functions which try to
provide a higher level representation of the environment, assuming
that they vary in a slower timescale when compared to the raw in-
put. The SFA output is an instantaneous function of the input so
that it depends only on the current state, differently from a filter
which depends on previous inputs2.

In mathematical terms (Wiskott and Sejnowski, 2002), the SFA
model tries to find output signals yi = gi(x(t)) such that:

∆(yi) := 〈ẏ2
i 〉t is minimal (7.1)

under the constraints

〈yi〉t = 0 (zero mean) (7.2)
〈y2
i 〉t = 1 (unit variance) (7.3)

∀j < i, 〈yiyj〉t = 0 (decorrelation and order) (7.4)

where 〈.〉t and ẏ denote temporal averaging and the time derivative
of y, respectively.

Learning

The first step of the learning process is normalizing the input signal
x(t) to have zero mean and unit variance.

The common step of non-linear expansion of the input signal is
not used in this work, but it is replaced by the non-linear reservoir
at the first layer of the RC-SFA architecture. It can be shown that

2Although the SFA output does not itself implement a filter, the reservoir in
the first layer of the RC-SFA architecture acts as a non-linear filter.
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SFA learning corresponds to solve a generalized eigenvalue problem
(Wiskott and Sejnowski, 2002):

AW = BWΛ, (7.5)

where A := 〈ẋẋT 〉t and B := 〈xxT 〉t.

The eigenvectors w1,w2, ...,wnSFA corresponding to the ordered
generalized eigenvalues λ1 ≤ λ2 ≤ ... ≤ λnSFA solve the learning
task, satisfying (7.2-7.4) and minimizing (7.1) (see Wiskott and Se-
jnowski, 2002, for more details). This algorithm is guaranteed to find
the global optimum. Learning and inference is very fast, as there
are efficient methods for solving the generalized eigenvalue problem.
The decorrelated SFA outputs extract instantaneous slowly-varying
signals, which is different from low-pass filtering of the inputs.

Although the eigenvalue problem for solving SFA is biologi-
cally unrealistic, biologically plausible implementations of SFA exist
(Hashimoto, 2003).

Architecture

The SFA layer (Fig. 7.1) is denoted by ySFA(t):

ySFA[n] = WSFAxSFA[n], (7.6)

where xSFA[n] is a normalized input vector at time step n consisting
of a concatenation of input u[n] and reservoir states x[n]. Note
that the states x[n] are generated by stimulating the reservoir with
the input signal u[n] for n = 1, 2, ..., ns by using the state update
equation (2.9) with leaky-integrator units, where ns is the number
of samples.

The weight matrix WSFA is a nSFA × (ni + nr) matrix corre-
sponding to the eigenvectors found by solving (7.5).

7.3.3 Independent Component Analysis

Independent Component Analysis (ICA) is a method used for sparse
coding of input data as well as for blind source separation (Hyväri-
nen and Oja, 2000). The ICA model assumes that a linear mix-
ture of signals x1, x2...xn can be used for finding the n indepen-
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dent components or latent variables s1, s2...sn. The observed values
x(t) = [x1(t), x2(t)...xn(t)] can be written as:

x(t) = As(t), (7.7)

where A is the mixing matrix and s(t) = [s1(t), s2(t)...sn(t)] is the
vector of independent components (both A and s(t) are assumed
to be unknown). The vector s(t) can be generated after estimating
matrix A:

s(t) = Wx(t), (7.8)

where W = A−1.

The basic assumption for ICA is that the components si are
statistically independent. In Hyvärinen and Oja (2000), it is also
assumed that the independent components have non-Gaussian dis-
tributions. In their work, an optimal estimator for nongaussianity
is given by negentropy:

J(y) = H(ygauss)−H(y), (7.9)

where y is a random vector; ygauss is a Gaussian variable with the
same covariance as y; and H is the information-theoretic measure
of differential entropy:

H(y) = −
∫
f(y) log f(y)dy, (7.10)

where f(y) is the density of y (note that the Gaussian variable has
the largest entropy of all random variables with the same variance).
They approximate the negentropy measure J by:

J(y) ∝ (E{G(y)} − E{G(ν)})2 (7.11)

where G is a nonquadratic function; ν is a standardized Gaussian
variable (zero-mean and unit variance).

In their work, ICA is formulated as minimization of mutual
information, which is an information-theoretic measure of the in-
dependence of random variables. The mutual information I among
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m scalar variables is given by:

I(y1, y2, . . . , ym) =
m∑
i=1

H(yi)−H(y), (7.12)

and is related to negentropy by:

I(y1, y2, . . . , ym) = C −
m∑
i=1

J(yi), (7.13)

where C is a constant, assuming that the components yi are un-
correlated and of unit variance. Thus, from (7.13), minimizing the
mutual information is equivalent to finding the directions (or sub-
space projections) in W which maximize the negentropy (Hyvärinen
and Oja, 2000).

Learning

In this chapter the matrix W is found with the FastICA algorithm (a
detailed derivation, based on maximization of negentropy, is given in
Hyvärinen and Oja (2000)). Before using ICA, the observed vector
x(t) is preprocessed by centering (zero-mean) and whitening (decor-
relation and unit variance, i.e., make E{x(t)x(t)T } = I) (Hyvärinen
and Oja, 2000). FastICA uses a fixed-point iteration scheme for find-
ing the maximum of the non-Gaussianity of wix(t) (where wi is a
weight vector of one neuron). The basic form of the FastICA algo-
rithm (for one unit) is described next:

1. Initialize wi randomly
2. Let w+

i = E{xg(wT
i x)} − E{g′(wT

i x)wi}
3. Let wi = w+

i /‖w
+
i ‖

4. Do steps 2 and 3 until convergence,

where g is the derivative of the nonquadratic function G (in this
work, g(u) = u3 for simulation experiments and g(u) = u exp(−u2/2)
for the experiments in real environments). Convergence means that
vectors w+

i and wi point in the same direction. The next units wi in
W are found one by one such that the outputs wT

i x are decorrelated
This algorithm finds a direction for wi such that the projection

wT
i x maximizes non-Gaussianity. This means that the independent

components will mostly be clustered, concentrated on specific values
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(in contrast with the more random values of Gaussian variables).
Whereas the FastICA algorithm may seem biologically unreal-

istic, an alternate biologically plausible implementation of ICA can
be achieved through non-linear Hebbian learning (Hyvärinen and
Oja, 1998).

Architecture

The equation for the ICA layer is (by redefining variables):

yICA[n] = WICAySFA[n], (7.14)

where: ySFA[n] is the input vector at time step n (the observed
values); WICA is the mixing matrix (nICA ×NSFA); and yICA[n] is
the output of the ICA layer (the independent components).

After training, the ICA units are ordered by kurtosis

kurt(yICA) = E{y4
ICA}

(E{y2
ICA})2 − 3 (7.15)

such that the first unit has the most kurtosis. The above expression
simplifies to E{y4

ICA} − 3 once we assumed yICA is of unit variance.

7.3.4 Place cell reconstruction

It is common to use population vector coding for interpreting acti-
vation from hippocampal place cells (Zhang et al., 1998). However,
Bayesian methods have shown superior performance for reconstruct-
ing the position of freely moving rats and were shown to be biolog-
ically plausible (Zhang et al., 1998). In this chapter, a probabilistic
method based on Zhang et al. (1998) is used to estimate the robot
position from the activation of ICA units. The reconstruction is
based on the conditional probability

P (xr|yICA) = P (yICA|xr)P (xr)
P (yICA)

. (7.16)

The prior P (xr) is the probability of the robot being at position
xr = (x, y) and can be estimated from with the true recorded posi-
tion during robot navigation. P (yICA) is a normalization term which
does not need to be explicitly known. P (yICA|xr) is the probabil-
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ity of the activation yICA given that the robot is at location xr.
As ICA units yICA are statistically conditionally independent, the
conditional probability factorizes and can be computed as:

P (yICA|xr) =
nICA∏
i=1

P (yiICA|xr), (7.17)

where P (yiICA|xr) is the probability of ICA unit i given that the
robot is at position xr, which can be estimated by computing the
histogram of the data P (yiICA|xr) = 〈yiICA〉xr/µ, where 〈yiICA〉xr

is the mean activation of ICA unit i in position xr and µ is a nor-
malization factor.

The reconstructed position is given by:

x̂r = arg max
xr

P (xr|yICA), (7.18)

which is the most probable position given the ICA layer activation.

7.4 Experiments with Simulated and Real Robots

This section shows that, using the RC-SFA architecture, the ca-
pability of self-localization of small mobile robots can emerge in a
self-organized way. Experiments are accomplished in a simulated
environment using the SINAR robot model, which has 17 short-
range noisy distance sensors (see Section 3.2.1 or the Appendix B.1
for more details), as well as in real-world environments using the
e-puck robot (see Section 4.2.1 or Appendix B.2), which has 8 infra-
red distance sensors. The real-world experiment is more difficult for
two main reasons: an increased stochasticity of the robot controller
(described in Section 4.2.1.3) and a limited number of sensors. Based
only on the local information from few noisy sensors, the RC-SFA ar-
chitecture can autonomously learn an internal representation of the
environment which allows for spatial coding and self-localization.

7.4.1 Environments

For the SINAR robot model, the experiments are conducted using
environment S6 (Fig. 7.2), a big maze with 64 predefined locations
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Figure 7.2: SINAR environment S6, as in Fig. 4.8, tagged with 64 labels
displayed by small triangles. Dimensions are given in distance units (d.u.). This
figure is reproduced here a second time to facilitate the comprehension of the
following experimental results.

spread evenly around the environment (represented by small labeled
triangles).

For data generation, the simulated robot navigates in the en-
vironment for 180.000 timesteps while its distance sensor measure-
ments are recorded. It takes approximately 13.000 timesteps for the
robot to visit most of the predefined locations with the SINAR con-
troller described in Section 3.2.1, which basically makes the robot
explore the whole environment. Additional investigations are also
performed with a modified version of the environment containing 11
obstacles which randomly move around the environment, represent-
ing an extra source of noise which also changes the robot behavior
and trajectory in the environment.

The environment of the e-puck robot has 3 rooms and a connect-
ing corridor (see environment E3 in Fig. 4.10). The robot navigates
in this environment according to the controller described in Sec-
tion 4.2.1.3. So, it can stay navigating in one room for a random
time interval, eventually making ellipsoid trajectories or leaving the
room towards the corridor (see Fig. 4.10(b)). The randomness of the
robot movement is determined by τ (see Section 4.2.1.3), which is
the probability of changing the movement direction at each second.
ICA units would learn to code for locations by the performing ex-
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(a) Real environment for e-puck (E3) (b) Robot trajectory

Figure 7.3: Environment and trajectory of the real e-puck robot, as in Fig. 4.10. (a) En-
vironment (120 cm × 90 cm) composed of three rooms and one corridor. The position of
the robot is tracked with a camera mounted above the environment for analysis purposes.
(b) Trajectory in gray generated by the robot controller in environment E3 for 60.000
timesteps (or 3.3 hours), with labeled asterisks representing delimited locations. This
figure is reproduced here a second time to facilitate the comprehension of the following
experimental results.

periments with different settings τ = 0, τ = 0.02, τ = 0.03, although
the more random the movement, the more difficult the place cell
learning. The results shown in this chapter consider the most ran-
dom behavior, that is, τ = 0.03, which practically means that there
is a probability of circa 60% for inverting the direction of movement
while the robot is navigating inside one of the rooms. The total
number of recorded samples is 192.000, which means approximately
11 hours of robot navigation.

7.4.2 Settings

For model optimization, multiple grid search experiments are per-
formed over subsets of the model parameters, using the place cell
reconstruction method from Section 7.3.4 for position estimation.
Each experiment during the optimization process is executed 10
times, with each run considering a randomly generated reservoir.

First, the recorded input signal u[n] is used to generate the reser-
voir states x[n], n = 1, 2, ..., ns using (2.9). Then, the training of the
RC-SFA architecture is accomplished in 2 steps. First, the SFA layer
is trained by solving (7.5) where the inputs are the reservoir states
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Table 7.2: Parameter configuration (values in bold were found by parameter
search)

Model (Environment) SINAR (S6) e-puck (E3)

Number of input channels ni = 17 ni = 8
Input connection fraction cri = 0.3 cri = 0.3
Input scaling υri = 0.9 υri = 2
Input downsampling dt = 50 dt = 1

No bias

Reservoir size nr = 300 nr = 600
Reservoir connection fraction crr = 1 crr = 1
Spectral radius ρ(Wr

r) = 0.99 ρ(Wr
r) = 0.99

Leak rate α = 0.4 α = 0.1

Number of SFA units nSFA = 128 nSFA = 128
Number of ICA units nICA = 128 nICA = 128

and distance sensors (as in (7.6)). After WSFA is found, the output
of SFA units ySFA[n], n = 1, 2, ..., ns is generated using (7.6). The
second step corresponds to training the upper ICA layer by applying
the FastICA algorithm from Section 7.3.3 where the inputs for this
layer are the output of the SFA units. The output signals ySFA[n]
and yICA[n] are upsampled to the original sampling rate of u[n].

The parameter configuration is given in Table 7.2 for both SINAR
and the real e-puck robots, where values in bold denote optimal pa-
rameters.

After downsampling the input signal for SINAR, ns = 3.600.
For SINAR, the training dataset has 5ns/6 samples and the test
dataset has ns/6 samples. For the real e-puck, 9/10 of the input
signal (172.800 samples) is used as the training dataset and 1/10
(19.200 samples) is used for testing.

7.4.3 Experimental Results

7.4.3.1 SINAR

Fig. 7.4 shows the output of 3 SFA units for a test input signal.
The left plot, Fig. 7.4(a), shows the outputs over time whereas the
right plots, Fig. 7.4(b), show the response of the neurons as a func-
tion of the robot position in the environment. In the left plot, the



20
40
60

R
ea

l L
oc

at
io

n

unit: 1

−2

0

2
S

F
A

 o
ut

pu
t

20
40
60

R
ea

l L
oc

at
io

n

unit: 12

−2

0

2

S
F

A
 o

ut
pu

t

0 10 20 30

20
40
60

R
ea

l L
oc

at
io

n

Timesteps (x 103)

unit: 24

0 10 20 30
−2

0

2

S
F

A
 o

ut
pu

t

(a) SFA output over time
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(b) SFA output as a function of the
robot position

Figure 7.4: Response of SFA units 1, 12, and 24 for simulations in Environment S6 on
test data. (a) the SFA output over time. For each location (in time) given by the labeled
triangles in Fig. 4.8, there is a colored dot where red denotes a peak response, green an
intermediate response, and blue a low response. The output is also plotted as a black
line. (b) the same SFA output as a function of the robot position for two distinct time
invervals [1, 8400] and [8401, 20000].
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horizontal axis represents the time, the left vertical axis denotes the
real robot location (as given by the labeled triangles in Fig. 4.8),
and the right vertical axis denotes the SFA output of the neuron.
The colored dots represent the output of the SFA unit (where red
denotes a peak response, green an intermediate response, and blue
a low response). The SFA output is also shown as a black line in the
same plot and as a colored trajectory in the right plot. As SFA units
are ordered by slowness, the first SFA unit has the slowest response.
It shows a high response for locations 40 to 64 and a low response
otherwise. Units 12 and 24 vary much faster, encoding several loca-
tions of the environment. In Fig. 7.4(b), each of the units is shown
during two different time intervals, [1, 8400] and [8401, 20000]. In
that way, it is possible to observe that units 12 and 24 encode spa-
tial information in a way which is dependent on the robot path,
that is, their activation depends on where the robot has come from
in the environment (a characteristic comparable to EC cells of rats
in Frank et al., 2000).

The upper ICA layer builds on the SFA layer. During learning,
ICA units seek to maximize non-Gaussianity so that their responses
become sparse and clustered, and also as independent as possible.
This form of sparse coding leads to the unsupervised formation of
place cells. Fig. 7.5(a) shows a number of ICA units which code for
specific adjacent locations in the environment. The peak response is
represented by white dots while lower responses are given gradually
in darker colors. As the robot navigates, a sequence of high activity
spots (white dots) is observable through these set of ICA units, each
one coding for a specific location in the environment. In order to vi-
sualize the localized property of place cells more clearly, the output
of ICA units are ordered such that they have a spatial relationship.
The reference locations (from 1 to 64), shown in environment S6
(Fig. 4.8), are used to automatically order the ICA layer. ICA units
which do not respond strongly enough in any situation are removed
from the vector. Fig. 7.5(b) shows the real occupancy grid for the
robot while it drives in environment S6 and the respective ICA ac-
tivation map showing the spatially-ordered ICA responses (where
u[n] is a test signal not used during learning). Stronger responses
are represented by darker dots in the figure. This activation map
is very similar to the real robot occupancy grid showing that the
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(a) ICA output
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Figure 7.5: Response of ICA units for simulations in Environment S6 on test data. (a)
Response of ICA units as a function of the robot position. White dots denote high activity
while darker dots represent lower responses. The results show the localized aspect of place
cells or ICA units (the peak response is characteristic of one specific location). (b) The
real robot occupancy grid (top) and the respective spatially-ordered ICA activation map
(bottom), where black dots denote peak responses and white represent lower responses.

place cells efficiently learned to cover most of the locations in the
environment.

The experiments shown here were repeated 15 times with the
same datasets, where each time a different random reservoir is cre-
ated. These distinct experiments have not shown any significant
differences in the quality of the learned place cells.

Most ICA units show an activation which is dependent on the
direction of the robot’s movement. This can be visually confirmed
in Fig. 7.6, where a blue surface represents a low activation and a
red surface means high activation. It shows that the activation of
several ICA units (vertical axis in the figure) is, on average, high
only for particular robot directions (horizontal axis in the figure).
This is comprehensible since the environment is composed of narrow
corridors, which shapes the robot trajectory so that the orientations
that the robot may have are restricted by the environment config-
uration. So, as the robot direction is not, in general, a constantly
fast-varying feature, it is also learned by SFA and ICA units.

Using the probabilistic place cell reconstruction method from



7.4. Experiments with Simulated and Real Robots 167

Figure 7.6: The plot shows the mean activation of ICA units as a function
of the robot heading, which reveals the dependence of trained ICA units on the
direction of movement. Red denotes high response while blue a low response.

Section 7.3.4, the predicted robot position during robot navigation
is computed given the activation in the ICA layer. The true and
predicted trajectory can be seen in Fig. 7.7(a) showing that the RC-
SFA architecture is able to learn an internal spatial representation
of the environment. Some jumps in the predicted position can be
observed, which also occur with the estimated position computed
with signals recorded from hippocampal place cell of rats (Moser
et al., 2008). Fig. 7.7(b) shows the same true and predicted positions
in terms of the x and y coordinates of the robot in the world frame
along with the respective error, given by the Euclidean distance
between the true (black line) and the predicted (points in cyan color)
positions. The mean test error is 17.2 distance units - see Table 7.3.

Another experiment with environment S6 is performed, in which
11 dynamic obstacles were artificially added to the environment.
These obstacles were constantly moving around in a random way,
possibly closing passages and forcing the robot to follow another
path. That yields more stochasticity in the environment and in the
robot behavior. The recorded dataset consists of 200.000 samples.
Training and parameter configuration are the same as in the previ-
ous experiment. The test error of 108 d.u., shown in Table 7.3, is
clearly higher than when the environment is not dynamic. Fig. 7.8
shows the network predictions as points in cyan and the true position
as a black curve. Despite this higher error rate, the trained system
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Figure 7.7: Prediction of the robot position in environment S6 given the activation
in the ICA layer using the place cell reconstruction method on test data. (a) The true
robot trajectory as connected black points (left) and the corresponding estimated robot
trajectory by the place cell reconstruction method given the activation in the ICA layer
(right). (b) The true and predicted robot coordinates given by black curves and points
in cyan color (gray for black-and-white prints), respectively. The bottom plot shows the
error as the Euclidean distance between true and predicted position.
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Figure 7.8: The true and predicted robot position in a modified version of envi-
ronment S6, containing 11 dynamic moving obstacles. Mistakes can be observed
when the predicted points in cyan (gray for black-and-white prints) deviate from
the black line (also detected by the error plot).

is robust enough to recover from intense environment stochasticity
given by dynamic obstacles and a period of miss-predictions without
the use of odometry.

7.4.3.2 Real Extended e-puck

The mean activation of 4 SFA units, rescaled to the inverval [0, 1],
as a function of the robot position is shown in Fig. 7.9(a). The
slowest SFA feature shows a high response in room 1 which gradually
decreases as it gets further to room 3. The third slowest feature has
a low response in the middle room and a high response otherwise.

Table 7.3: Results using the place cell reconstruction method

Environment (Robot) Dimensions Type Architecture Test Error

S6 (SINAR) 800×600 d.u. Simulation RC-SFA 17.2 d.u.
S6 dynamic (SINAR) 800×600 d.u. Simulation RC-SFA 108 d.u.
E3 (E-puck) 120×90 cm Real RC-SFA 11 cm
E3 (E-puck) 120×90 cm Real SFA 23 cm
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Faster-varying features, like units 80 and 128, show high responses
in multiple locations of the environment, characterizing low place
selectivity in a way similar to entorhinal cortex cells of rats in Frank
et al. (2000).

The mean activation of ICA units as a function of the robot
position hi(xr) is computed by averaging out the response of each
ICA unit over a discrete grid of evenly spaced robot positions. Four
units’ mean activation are shown in Fig. 7.9(b). It is clear that these
units learned to code for particular locations in the environment, i.e.,
the place fields of the cell, presenting a peak response at the center
of these locations.

The mean activation does not show whether the unit is invariant
to the robot movement direction. To investigate about the direc-
tionality aspect of ICA units, Fig. 7.10(a) shows several plots, where
each row corresponds to an ICA unit, and each column considers
robot positions with specific robot headings. Each plot displays
robot positions associated with a heading θ in cyan color, whereas
the robot positions plotted in maroon color represent a strong acti-
vation of the corresponding ICA unit. For example, unit 5, in the
first row, is strongly activated at the right part of the corridor when
the robot is heading right (θ = 0±κ). The last column of this figure
shows the mean activation as a function of the robot heading, clearly
showing the direction dependence of these ICA units. Fig. 7.10(b)
is another plot which indicates the directionality dependence of ICA
units, by showing the mean activations of each ICA unit as a func-
tion of the robot heading, where the most representative (with most
kurtosis) ICA units are direction-dependent.

By using the probabilistic method described in Section 7.3.4,
the capability of trained ICA units is evaluated in terms of robot
localization performance. Fig. 7.11 shows the estimated robot po-
sition using equation (7.18) as well as the true robot position for
3.000 timesteps. The test error, given by the Euclidean distance
between xr and x̂r was 0.1188 for these 3.000 timesteps. It can be
seen in the figure that the estimated position matches very well with
the true robot position, confirming the good localization capability
which emerged from the unsupervised learning of the RC-SFA archi-
tecture. Furthermore, erratic jumps of the estimated robot position
can be seen in this figure, which is actually also observed in the esti-
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Figure 7.9: Activation of SFA and ICA units in environment E3. Red denotes
a high response whereas blue denotes a low response. (a) Mean activation of
SFA units as a function of the robot position in the environment, rescaled to the
interval [0,1]. (b) Mean activation of place cells (ICA units) as a function of the
robot position in the environment.
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Figure 7.10: Results after training with the e-puck robot in environment E3. (a)
Directionality dependence of place cell activation for test data. Each row represents a
place cell, where points in cyan (lighter) color denote the positions occupied by the robot
for given directions θ in the environment and points in maroon (darker) color represent
the positions where the place cell responses are higher than a certain fixed threshold.
The last column shows the mean activation of a place cell as a function of the robot
heading. (b) Mean activation of place cells as a function of the robot heading. The plot
shows that the activation of most place cells is dependent on the robot heading. The
results are shown for test data. Red denotes a high response whereas blue denotes a low
response.
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(b) SFA + ICA (using a time window and non-linear expansion)

Figure 7.11: Predicted robot position in environment E3 on test data using the
Bayesian place cell reconstruction method for 3.000 timesteps of navigation. (a)
Results using the RC-SFA architecture. The true and predicted robot coordi-
nates are given by black curves and points in cyan color (gray for black-and-white
prints), respectively. The bottom plot shows the error as the Euclidean distance
between true and predicted position. (b) Results using an architecture without
the reservoir, but with a time window and non-linear expansion on the input
signal for the SFA layer.
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mated position from the activity recorded from hippocampal place
cells of rats (Zhang et al., 1998).

7.4.3.3 Robustness to Noise

The robustness of the proposed architecture was also tested consid-
ering different levels of Gaussian noise on the sensor measurements.
In Fig. 7.12, the mean and standard deviation of the test error,
given by the Euclidean distance between true and predicted posi-
tions, are displayed for noise levels ranging from 1% to 50%. The
error stays very low even with 15% noise on sensors. From 20%
on, sensors become too noisy and do not convey useful information,
which causes the error to unexpectedly raise to near a maximum
(in a nonlinear way), showing that the architecture is quite robust
to noisy sensors. After 20% noise, a generative network could be
used to predict sensory signals from the activation of ICA units (see
Chapter 8 for future work).

7.4.3.4 The Role of the Reservoir

The dynamics of the reservoir is best fine-tuned by grid search-
ing two parameters: the input scaling of Wr

i and the spectral ra-
dius ρ(Wr

r) (Verstraeten and Schrauwen, 2009) (see Section 2.3).
Fig. 7.13 shows that the nonlinear reservoir performs better for
ρ(Wr

r) <= 1, on average. The reservoir’s dynamic nonlinear regime
is further tuned by choosing an optimal input scaling. Higher values
of the input scaling yield an improvement in performance, as shown
in the figure. The optimal combination is an input scaling of 2.5
and ρ(Wr

r) = 0.9.
Leaky integrator neurons can also enhance performance if the

input timescale does not optimally match the reservoir timescale.
The leak rate α in (2.9) controls how fast (or slow) reservoir units
respond to input stimuli. In Fig. 7.14, it is possible to see that there
is an optimum for the leak rate, when it is approximately 0.07.
It also shows that the short-term memory in the reservoir is an
important characteristic for the learning of the SFA and ICA layers
and, therefore, for the performance of the localization capability of
the robot.
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Figure 7.12: Robustness to Gaussian noise. The plot shows the mean and
the standard deviation of the localization error on test data from environment
E3 considering different noise levels on all 8 robot distance sensors. Training
data uses only 0.5% noise on sensors in all experiments. Each experiment is run
for 10 times (the plot shows the mean and the standard deviation).

In order to confirm the importance of the reservoir in the pro-
posed RC-SFA architecture, experiments are performed with an ar-
chitecture which replaces the reservoir by a non-linear expansion on
a time-delayed downsampled input signal. The non-linear function
expands the input signal in the space of polynomials of degree 2.
The model was optimized by grid searching the following parame-
ters: downsampling rate dt and size of the time window tw. The
best performance in terms of the Euclidean distance between true
and predicted robot position, which is 0.21, is attained for dt = 32
and tw = 2.

So, this architecture uses a reduced and smoothed input signal
by a downsampling process which converts ns = 192.000 samples
into ns = 6000 samples. It also uses a time window of size 2 which
effectively produces ni = 16 inputs after the non-linear expansion
step. Table 7.3 shows that this model has a test error which is almost
double of the error using the RC-SFA architecture. In Fig. 7.11(b),
the predicted robot position using this model and its associated
error are shown. Although it learned to code for some locations in
the environment, the precision is not as good as with the RC-SFA
model in Fig. 7.11(a). Intermediate locations are not coded at all:
note that the predicted x coordinate often presents big jumps.
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Figure 7.14: Influence of the reservoir’s leak rate on performance. The plot shows
the mean localization error (and its standard deviation) on test data from environment
E3 considering different leak rates α of the reservoir. Each experiment is executed 10
times with randomly generated reservoir weights. α = 0.07 yields the lowest test error.
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7.5 Discussion

The SFA layer in the proposed model has shown low place selectivity,
with similarities to entorhinal cortex (EC) cells of rats in W tracks
(Frank et al., 2000), whereas the ICA layer has presented high place
selectivity and an activation which is dependent on the robot path,
similarly to hippocampal cells of rats in Frank et al. (2000).

The directionality aspect of place cells in the ICA layer is in ac-
cordance with other works in the literature which show that environ-
ment shape and robot behavior affect the directionality component
of place cells (Frank et al., 2000; Eichenbaum et al., 1999; Brunel
and Trullier, 1998). Most of these computational models implement
path integration using idiothetic input, despite the current lack of
knowledge with respect to the mechanisms of path integration in
the brain like the integration of self-motion signals with allothetic
input (Eichenbaum et al., 1999). On the other hand, in the pro-
posed RC-SFA architecture, the reservoir integrates the allothetic
input (distance sensors), forming a trajectory in state space which
SFA units use to learn spatial features from a given environment.
This computation can be compared with optical flow, in the sense
that the reservoir provides a temporal memory of the stimuli stream
which can be used for distance estimation, that is, the reservoir is
involved in maintaining an estimate of the robot location for a tem-
porary time period in the absence of the distance sensory input.

Learning in SFA is comparable to Principal Component Analy-
sis (PCA) in terms of complexity. Furthermore, while biologically
plausible implementations of SFA exist (Hashimoto, 2003), there is
experimental evidence showing that the slowness learning principle
of SFA is present in the visual cortex (Li and DiCarlo, 2008).

Although the current ICA implementation may seem biologically
unrealistic, a more biologically plausible learning scheme for gener-
ating place cells at the top ICA layer from the non-localized repre-
sentation of SFA units can be implemented by competitive learning
(Franzius et al., 2007b) or non-linear Hebbian learning (Hyvärinen
and Oja, 1998).
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7.6 Conclusion

This chapter has proposed a biologically-inspired hierarchical archi-
tecture with three layers for learning sensor-based spatial representa-
tions of a robot environment in an unsupervised way. The proposed
model does not use any idiothetic signals for path integration (or
odometry) as most models do (Burgess et al., 2007; Hasselmo, 2008;
Arleo et al., 2004; Stroesslin et al., 2005; Milford, 2008), and is the
first to rely solely on a limited number of raw distance sensors for
unsupervised learning of place cells.

The first layer of the architecture is a reservoir of recurrent
nodes, which is used as a form of temporal kernel for projecting
low-dimensional inputs (e.g., a small number of distance sensors) to
a dynamic high-dimensional space. It integrates the noisy distance
sensory input for making it possible to infer the robot position from
the history-dependent trajectory of the dynamic reservoir. The sec-
ond layer learns in an unsupervised way to derive slowly-varying
features from the reservoir states and also possibly from the input
layer, using the Slow Feature Analysis (SFA) algorithm. These slow
features indicate latent signals present in the input signal which
vary in a slower timescale, such as the position or the orientation
of a robot in its environment. If the position can be inferred from
given inputs (e.g., the reservoir state), SFA can extract it based
on the slowness concept. The top layer produces independent com-
ponents which are a linear combination of the SFA features, using
Independent Component Analysis (ICA). It learns a sparse coding
on the SFA outputs, resulting in units which are activated only for
a specific position in the robot environment.

Using a probabilistic place cell reconstruction method (Zhang
et al., 1998), the robot position (coordinates in the world’s frame) is
estimated from the activation in the ICA layer. This estimated posi-
tion has shown that the ICA layer in the RC-SFA architecture has an
activation correlated to the robot position, confirming the powerful
capability for sensor-based unsupervised learning of spatial repre-
sentations. These results are obtained in simulated environments
considering a robot model with 17 distance sensors, as well as in
real environments using the e-puck robot with 8 infra-red distance
sensors.
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This chapter represents a step towards enhancing the autonomy
of previous architectures which were based on a supervised learning
scheme. The RC-SFA architecture enables the self-organized au-
tonomous learning of implicit spatial representations of a
robot environment, that is, it is not necessary to label training
data with the location (or room) of the robot during its naviga-
tion as done previously. Moreover, goal-directed navigation systems
could significantly benefit by using an unsupervised way of learning
internal models with RC-SFA, revealing them as more biologically
plausible systems. Future work and extensions are given in Chap-
ter 8.





8
Conclusion and Future work

8.1 Summary

The usual Reservoir Computing (RC) model, called Echo State Net-
work, is composed by a randomly generated sigmoidal recurrent
network with fixed weights, the reservoir, and an adaptive linear
readout output layer, usually trained by linear regression methods.
RC has been considered a major breakthrough in training recurrent
networks due to ease of training and good convergence properties of
the training method.

This work has shown that RC networks can be trained and used
to a multitude of navigation and modeling tasks using small mo-
bile robots with inexpensive sensory apparatus in unknown envi-
ronments. RC naturally solves sensor aliasing problems, common
for robot navigation tasks, through learning and computation in the
high-dimensional dynamic system space. In this way, the sequence
of robot positions given by a reactive robot behavior in an environ-
ment can be inferred from the trajectory of the high-dimensional
state of the reservoir, for instance. This is because the trajectory
of the dynamical reservoir system inherently possesses a short-term,
fading memory of previous inputs, thus capable of disambiguat-
ing the sensory input space. Moreover, all tasks considered in
this work are performed using solely a limited number of noisy
distance sensors as input. Encoder information from wheels for
path integration (dead reckoning) are not necessary, besides count-
ing wheel revolutions is probably not biologically plausible.
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With RC, robust reactive behaviors can be learned in an imita-
tion learning way by providing examples of desired sensory-motor
coupling. More interestingly, a single RC network can be trained
to model multiple behaviors or navigation attractors by chang-
ing the operating point of the dynamical reservoir with additional
external inputs. These extra inputs create sub-space attractors in
the dynamical system space, each one modeling a different behav-
ior, which effectively boosts the memory capacity of RC networks.
These sub-space attractors can be understood as reactive behav-
iors which emerge from the coupling existing between the robot con-
troller (the RC network) and the environment. They can be visually
inspected by observing the trajectory of the robot in the environ-
ment space, or by observing their projection in the high-dimensional
reservoir space.

Hierarchical RC networks proposed in this work enabled com-
plex goal-directed navigation in an unknown, unstructured envi-
ronment. The predictions of hidden layers, representing the current
robot position and orientation, were used to select suitable naviga-
tion attractors in a sequence that leads to a goal location. All of
this is achieved purely on an imitation learning basis, by generating
examples of routes from a start location to a goal location.

RC networks can also be used in a generative way, by training
the network to predict the sensory input nodes. These Generative
RC (GRC) networks, when used in free-run mode, i.e., by shut-
ting off the feedback from the environment and letting the network
freely simulate its internal dynamics, it is possible to generate future
scenarios, in terms of environmental perceptions and robot position,
based on the behavior recorded in the training data. It was shown
that a GRC network can simulate the future behavior of a mobile
robot, which can potentially be used for path planning in a network
which models multiple behaviors.

Learning procedures other than supervised learning have been
shown to work well with RC networks. An unsupervised learning
method which extracts slowly-varying features from an input sig-
nal, Slow Feature Analysis (SFA), when applied to the dynamic
non-linear space of the reservoir, was shown to model spatial en-
coding cells which activate for multiple specific locations of the
robot’s environment. Another layer on top of the SFA layer im-



8.2. Discussion 183

plementing sparse coding (with Independent Component Analysis)
generates cells with very high place selectivity (in a way similar to
hippocampal CA1 cells of rats).

As conclusion, RC proved to be a quite general method capa-
ble of modeling a diversity of navigation tasks under several types
of learning paradigms (e.g, supervised and reinforcement learning),
where hierarchical networks are able to model more complex implicit
environment representations and navigation problems than single
networks. With the RC framework in this thesis, more abstract in-
telligent capabilities for generating efficient purposeful trajectories
are made possible for mobile robots with restricted power and low
computational demands, such as home cleaning robots.

8.2 Discussion

An important concept for most experiments is navigation attrac-
tor embedding. These attractors are formed by reactive behaviors
in the environment space which exhibit a pattern of sensory-motor
sequences throughout the environment. Once projected into the
dynamical system space of the reservoir by stimulating it with sen-
sory signals, the navigation attractors become embedded into the
network through the coupling of RC network (controller) and en-
vironment. Moreover, by using additional binary inputs represent-
ing multiple behaviors, these navigation attractors can be turned
into sub-attractors in the dynamical system space, which ultimately
boost the memory capacity of a single RC network, and can even
be used by a generative network to autonomously simulate future
paths taken by different behaviors for path planning.

The very general purpose RC method employed in this work
has limitations with respect to generalization of trained networks to
behaviors not seen during training. If an RC-based location
detector is trained using a specific robot controller, it will only work
during testing if a similar robot controller is used. This is because
the dynamics which were induced in the reservoir by the sequence of
sensory inputs is specific to the behavior of the robot. Moreover, the
trained network will not recognize locations not seen in the training
dataset, that is, it will not be able to extrapolate to new loca-
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tions, unless an online learning method for new locations is devised
(see next section).

Another point is that as the randomness of the robot behav-
ior increases, it gets more difficult to learn implicit spatial represen-
tations of the environment and probably model the behavior itself
as well. More random behaviors also require bigger reservoirs and
more training data to make learning and generalization possible.

A related subject is how to reduce the size of training
datasets in this thesis, composed of hundred thousands of samples.
A detailed study is necessary, in this case, to point out the extent of
dependence of the RC-based approach on the size of training data.
With smaller datasets, regularization methods (Section 2.6) play a
major role to guarantee generalization (i.e., good performance on un-
seen data). By reducing the number of training samples, the current
approach will get concretely closer to the goal of energy-efficiency
in navigation systems for small robots.

The performance of localization and navigation experiments can
be very much improved by using multiple different leak rates
in a single reservoir or in separate reservoirs (for achieving uncorre-
lated frequencies) mainly when the robot exhibits different speeds
during navigation. This is an essential parameter to tune, which is
correlated to the timescale of the input signal but also to the task at
hand. For instance, a localization reservoir must operate at a slower
timescale than a navigation reservoir, even though both reservoirs
are stimulated with the same input. Leaky integrator units function
as low-pass filters of the reservoir state and a similar effect can be
achieved by resampling the dataset (with the advantage of re-
ducing the size of the dataset, and the drawback of loosing details
due to the averaging effect of downsampling).

8.3 Future work

Self-organized Learning of New Locations

Considering the architecture from Chapter 4, new locations not seen
during training can not be detected by the RC network, as already
mentioned. However, a method for solving this issue can easily be
devised, at the expense of re-training the network. As soon as the



8.3. Future work 185

robot enters an unknown area or location, it is expected that all
units in the readout output layer will show very low activity. This
scenario of low activity may be used to label all samples generated
during this period as a new location. These additional samples,
concatenated to the original training dataset, can be used to re-train
the RC network, characterizing a scheme of autonomous learning
of new locations.

This autonomous process could even, in principle, be applied to
training RC networks from scratch as the robot starts navigating,
without the manual a priori labeling of data as was done in Chap-
ter 4. This autonomous self-organized mechanism would take care
of segmenting the real-time data into chunks to be classified as a
single location, by discovering events such as, for instance, passing
through the boundaries of rooms (which can be easily implemented
by an extra RC network, as shown previously in this chapter) which
share similar properties from the robot’s perspective.

SFA for Goal-directed Navigation

In order to increase the autonomy of a navigation system, it is nec-
essary to design self-organized learning principles so that effort
on labeling training data is kept to a minimum. The idea is to move
parts of or the whole architecture from a supervised learning mode
to an autonomous learning mode. For instance, the hierarchical ar-
chitecture of Chapter 5, composed of a localization module and a
navigation module, could be modified so that at least the localiza-
tion module is trained by an unsupervised learning method such as
SFA, shown to construct implicit environment representations in a
self-organized way (Chapter 7). As it was shown that trained SFA
units exhibit activation patterns which are dependent on the robot
path or behavior, in principle SFA is suitable for goal-directed
navigation as the orientation of the robot matters significantly for
learning the task (as predictions on both the previously visited and
the current room were necessary to steer the robot to the destination
room in Chapter 5).
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SFA for Reinforcement Learning Navigation Tasks

It remains to be investigated how SFA could be used in re-
inforcement learning (RL) navigation tasks where behaviors
are constantly evolving over learning iterations, as shown in Ap-
pendix A. At first, one would create an SFA layer between the
reservoir layer and the output node representing the Q-value of the
state-action pair, in the expectation that the implicit SFA repre-
sentation would help to scale to bigger environments or speed up
convergence of the learning process. However, as the SFA layer only
performs a linear projection of the reservoir state space, it is more
likely that this intermediate SFA representation does not help to
improve the RL navigation task. An alternate and more interest-
ing way of using SFA is by placing the SFA layer in between two
reservoir layers. The second reservoir layer, receiving input from
distance sensors as well as from the activations of SFA units, would
be able, in principle, to learn much more complex relationships be-
tween the current context of the robot in its environment and the
desired action. This new architecture is analogous to the hierar-
chical architecture of Chapter 5, in which a navigation reservoir is
driven by the activities generated by the localization module. In the
same way, it is expected that SFA units could drive the operating
point of the reservoir state space to different sub-attractors, and in
this way increase the memory capacity and the possibility to use
more complex environments.

Planning with Hierarchical Networks

A quite interesting system can be designed by combining the gener-
ative RC network of Chapter 6 and the hierarchical network used for
goal-directed navigation in Chapter 5. In this way, a generative
hierarchical network, which predicts also sensory nodes, can be
used in free-run mode to simulate paths throughout complex envi-
ronments towards a given destination room. The autonomous sim-
ulation which runs disconnected from the environment would create
predictive sequences of perceptions, robot positions, and actuators
according to an internal dynamics induced by the imitation learn-
ing process. Not only one, but multiple trajectories to destination
rooms could be simulated without actually driving the robot, cre-
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ating possibilities for deliberative path planning processes based on
a very low-dimensional raw sensory space given by the few distance
sensors of the robot.

Generative RC networks for Path Planning based on Rewards

Generative RC networks could also be used in deliberative navi-
gation systems which choose a rewarded sequence of naviga-
tion attractors to perform. This architecture, similar to the one
in Chapter 6, would have additional inputs representing behaviors
and an output node modeling the immediate reward. The train-
ing process would collect data by randomly sequencing navigation
attractors (corresponding to these extra inputs) throughout the en-
vironment and only rewarding the desired sequence through space,
by teacher forcing the output node modeling the reward. This gen-
erative architecture, trained in a supervised way, can be used in the
testing phase to discover what sequence of behaviors should be cho-
sen to reach the rooms where the robot previously received rewards,
by performing a search over all behaviors using the generative net-
work in free-run mode. This ultimately leads to the formation of
planning-like capabilities in a reinforcement learning task which is
modeled by a supervised learning algorithm (which in principle also
requires the labeling of the rooms of an environment).

Explicit Map Generation with Extended RC-SFA architecture

Considering the RC-SFA architecture from Chapter 7, future re-
search could be done on generative models which predict the
robot perceptual input given the activation of the ICA layer. This
can be implemented in a supervised fashion using a reservoir with
the location as inputs (ICA units) and the sensory input as desired
output, as described in Chapter 6. Although the training of this
generative model is supervised, the whole learning process is still
unsupervised, because no labels for the locations are needed since
they emerge in a self-organized way with SFA and ICA. By using
this generative architecture, it is possible not only to generate ex-
plicit maps of the environment given the ICA activation but also to
create fault-tolerant location detection in the ICA layer in situ-
ations where sensors are broken or faulty by predicting this missing
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information (see Section 6.5).

Towards biologically-inspired SLAM

In the context of robot navigation and localization, future work
include the integration of the allothetic representation of the RC-
SFA architecture from Chapter 7 with idiothetic signals such as the
robot position estimated by a path integration module (odometry).
Using this setup, the new architecture could be compared to a basic
form of biologically-inspired SLAM (as ratSLAM in Milford,
2008).

Deep Hierarchies with RC-SFA

In principle, the proposed RC-SFA architecture from Chapter 7
would scale to larger environments, but likely not to very ran-
dom robot behaviors due to the limited memory capacity of reser-
voirs (unless sub-attractor switching mechanisms are used to in-
crease total memory as seen in Chapter 5). Alternate or additional
attempts to scale to more complex environments and richer sensory
data (e.g., a camera) are using deeper hierarchies with receptive
fields or even multiple reservoirs situated at different layers in the
hierarchy.



A
Reinforcement Learning in
non-Markovian Navigation

Tasks
Autonomous robot navigation in partially observable environments
is a complex task because the state of the environment can not
be completely determined only by the current sensory readings of a
robot. For instance, the distance sensors provide only a local view of
the environment which can not always be used to infer the absolute
position of the robot in it. Temporary signals or commands given
to the robot which are correlated with future motor responses (as
in delayed response tasks) are another cause of partial observabil-
ity. These problems are typically modeled as Partially Observable
Markov Decision Process (POMDP), where the underlying state can
not be directly observed by an agent, and are usually intractable to
solve exactly. In this chapter, RC is used to approximate the state-
action value function in non-Markovian navigation tasks. By using
a policy iteration framework, where an alternating sequence of pol-
icy improvement (samples generation from environment interaction)
and policy evaluation (network training) steps are performed, the
system is able to shape navigation attractors so that, after conver-
gence, the robot follows the correct trajectory towards the goal. The
experiments are accomplished using an e-puck robot extended with
8 distance sensors in a rectangular environment with an obstacle
between the robot and the target region. The task is to reach the
goal through the correct side of the environment, which is indicated
by a temporary stimulus previously observed at the beginning of the
episode. We show that the reservoir-based system (with short-term
memory) can model these navigation attractors, whereas a feedfor-
ward network without memory fails to do so.
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A.1 Introduction

Autonomous robot navigation tasks frequently need to be solved
under the assumption that the state of the environment is partially
observable, where the robot does not know the complete state of the
environment just by reading its current sensors, such as its position
in the environment. This is usually referred in the literature as
a partially observable Markov decision process (POMDPs). Thus,
the navigation system requires additional sources of information for
building the complete state of the environment, such as using wheel
encoders to estimate the traveled distance and the current robot
position. Instead of explicitly modeling odometry, Chapters 4 and
7 show that RC networks can detect the location of the robot in a
supervised or unsupervised way.

Reinforcement Learning (RL) rules are based on a reward signal
r[t], which represents the outcome (i.e., success or failure) of a learn-
ing trial. In immediate reinforcement learning, the reward signal is
given at every timestep and is usually computed as the distance to
the goal. On the other hand, for RL methods with delayed reward
signals the outcome is given only at the end of a trial. Whereas in the
former case hints are given in every moment, the latter case defines
a very less informative reward function which can delay the learning
process, although it is more biologically plausible. RL algorithms
such as Q-learning (Sutton and Barto, 2000) learns an action value
function Q(s, a) which indicates the utility of an action a in a state
s. It tries to maximize the mean expected future reward by using
a value iteration update rule. Whereas these rules are applied in an
online fashion, in fitted Q iteration (Riedmiller, 2005) the Q(s, a) is
learned in batch mode with supervised learning techniques such as
linear regression and artificial neural networks.

RC-based systems are usually trained in a supervised way. Some
works in the literature use RC in a Reinforcement Learning frame-
work to model partially observable environments (Bush, 2008; Szita
et al., 2006). In Szita et al. (2006), an RC network with multiple
outputs in the readout layer, each one corresponding to the value of
a discrete action, are trained online via a SARSA update (Sutton
and Barto, 1998) rule, whereas in Bush (2008), an RC network with
one output representing the value function for a state-action input
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pair is trained in an iterative batch-mode way. Both works consider
partially observable environments, but while Szita et al. (2006) ap-
plies to discrete-world tasks, Bush (2008) consider more complex
control tasks such as the acrobot swing-up task (Sutton and Barto,
1998).

Function approximators are typically used to model the state-
action value function in complex problems where the state space is
continuous, and in most cases a ε-greedy policy on the value func-
tion is used for selecting the optimal action, where ε defines the
probability of selecting random actions for exploration of the state
space. In particular, sample-based methods like fitted Q iteration
(Riedmiller, 2005) and least-squares policy iteration (Lagoudakis
and Parr, 2003) are efficient batch-mode training methods for mod-
eling the state-action value function using function approximators.
They collect samples as tuples

(st, at, rt, st+1),

where st is the state at time t; and st+1 is the next state after execut-
ing action at on state st and receiving the reward rt, by interacting
directly to the environment using either totally random actions or
a ε-greedy policy. The dataset composed of samples are iteratively
used for batch training.

This chapter uses a similar approach as Bush (2008). In that
work, an RC network is used to model non-Markovian environments
in control tasks such as the mountain car problem and the acrobot
swing-up task. It uses a reservoir to convert a non-Markovian state
to an approximate Markovian state representation embedded in the
high-dimensional state-space of the reservoir.

Specifically, the current chapter uses an RC network to model
partially observable environments in robot navigation problems. In
Chapter 3, navigation attractors were learned via imitation learning.
Here, multiple navigation attractors are iteratively shaped through-
out the evolutionary process of trial and error, until a suitable set
of task-achieving attractors or behaviors is found. The experiments
are performed using an e-puck robot with 8 distance sensors in a
rectangular environment with an obstacle between the robot and
the target region. The task of the robot is to reach the goal through
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the correct side of the environment. A temporary stimulus at the
beginning of the episode indicates which side of the environment the
robot should use. So, to successfully perform the task, the naviga-
tion system must have some sort of short-term memory.

In the proposed setup, the RC network is iteratively trained in
batch mode to approximate the state-action value function given as
input 8 distance sensors, a discrete action and an additional input
which simulates the temporary stimulus. The discrete action is mod-
eled by three motor primitives (left, right and forward) for moving
the robot in the environment. Experimental results show that after
an initial exploration period and a sequence of policy improvements
steps, the robot is able to navigate to the goal circumventing the ob-
stacle through the correct side (determined by the initial stimulus)
in a quasi-optimal trajectory. It is also shown that the fading mem-
ory of the reservoir is essential to model these context-dependent
navigation attractors.

A.2 Methods

A.2.1 Reservoir Computing for Q-value Approximation

In fitted Q iteration (Ernst et al., 2005), samples in form of tuples

(st, at, rt, st+1), t = 1, · · · , I,

are generated from interaction with the environment and collected
in a training dataset. Training the system is done offline using the
collected samples under a supervised learning framework: usually, a
regression algorithm is used to learn the state-action value function,
by defining the input and the desired output as follows:

u[t] = (st, at), (A.1)
ŷ[t] = rt + γmax

a
Q̂N−1(st+1, a), (A.2)

where: st, at and rt are the state, action and reward at time t,
respectively; N is the iteration of the training process; and γ is the
discount factor. Using the dataset of input-output pairs (u[t], ŷ[t]),
the function Q̂N (s, a) is induced with a regression algorithm.
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In this chapter, an analog sigmoidal RC network or Echo State
Network (ESN) is used to model the critic, that is, the Q-value
(Sutton and Barto, 1998) function, in non-Markovian environments.
Given a partially observable state vector s̃ and an action a as in-
put, the goal is to approximate the expected future sum of rewards,
the Q-value for the pair (̃s, a), using an RC network as approx-
imation method. The randomly generated reservoir can convert
non-Markovian state-spaces into Markovian state-spaces due to its
characteristic fading memory of previous inputs. This method is
similar to fitted Q iteration (Ernst et al., 2005; Riedmiller, 2005)
and least squares policy iteration (Lagoudakis and Parr, 2003) in
that it is based on batch offline training and approximates the value
function in an iterative way.

In Bush (2008), the RC network is used in reinforcement learning
control tasks such as the mountain car problem and the more com-
plex acrobot swing-up task. The input to the reservoir is a vector
u[t] composed of a partially observable state s̃, such as the position
of the car or the joint angles of the acrobot (so, excluding the ve-
locity component), and an action a, and the only output is trained
to approximate the state-action value function.

As Q̂(s̃, a), the desired output ŷ, can be approximated by a sum
of future rewards over a finite time horizon h (Bush, 2008), equations
(A.1) and (A.2) can be rewritten, in the case of a non-Markovian
environment:

u[t] = (s̃t, at), (A.3)
ŷ[t] ≈ rt + γrt+1 + γ2rt+2 + · · ·+ γhrt+h (A.4)

The training is accomplished in an iterative way and consists of
a sequence of policy improvement and policy evaluation steps (see
Fig. A.1). During policy improvement, new samples (st, at, rt), t =
1, ..., I are generated using a ε-greedy policy and the trained archi-
tecture. I is the number of samples generated during one iteration of
the policy improvement stage, which is set to I = 1000. During pol-
icy evaluation, the training input-output pairs (u[t], ŷ[t]), t = 1, ..., E
are generated using (A.3) and (A.4), respectively, and the RC net-
work is trained on a subset of the dataset generated through in-
teraction with the environment. This subset corresponds to a slid-
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Policy improvement =
RC network 

exploitation + exploration

Policy evaluation =
RC network training

trained architecture

samples
(st,at,rt)~

start with randomly 
generated reservoir

epsilon-greedy policy; 
epsilon schedule

Figure A.1: Approximate Policy Iteration: Policy improvement + Policy evaluation.
The iterative policy learning consists of: generation of samples by interacting with the
environment using a ε-greedy policy and the trained architecture (policy improvement);
and of training the architecture (in this case, the RC network) to approximate the state-
action value function with a regression algorithm using the dataset generated during
policy improvement. s̃ is a partially observable state, characterizing a non-Markovian
task which should be handled by the RC network.

ing window of samples of size E, such that only the most recent
E = 40.000 samples are used for training. During the iterative pol-
icy learning process, the ε-greedy policy follows a learning schedule
where the exploration is intense at the beginning of the process and
monotonically decreases towards the end of the experiment. This is
accomplished by varying ε according to a predefined schedule (Bush,
2008) (given in Section A.3.1).

The RC network used in this chapter is shown in Fig. A.2. The
equations of the model and its training method, linear regression, are
described in Chapter 2. Specifically, it is considered in this chapter
the reservoir state update equation with leaky-integrator neurons
given by (2.9), while the equation for the readout output y[t], which
models the state-action value function in this chapter, is given by
(2.6).

The exploitation of the RC network in Fig. A.2 for the
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input

u(t)=[s(t) a(t)]

reservoir

x(t)

output

y(t)~

^ ~Q(s,a)

Figure A.2: Reservoir Computing network as a function approximator for
modeling the critic (i.e., state-action value function) in reinforcement learning
tasks with partially observable environments. Solid lines represent connections
which are fixed. Dashed lines are the connections to be trained.

control task is based on the following equations:

aopt[t+ 1] = arg max(y[t+ 1]) (A.5)

aopt[t+ 1] = arg max

[Wo
r Wo

i

] 
xa[t+ 1]

s̃[t]
a


 , (A.6)

where xa[t + 1] is an internal reservoir state which is dependent on
the action a tested during the application of arg max:

xa[t+ 1] = f

(
Wr

rx[t] + Wr
i

[
s̃[t]
a

])
.

This means that the reservoir state is freezed at timestep t, and to
choose the optimal action, the arg max function runs the reservoir
for each value of action a always starting at the same reservoir state
x[t] from timestep t. For instance, Fig. A.3 shows how the reser-
voir state evolves over time by using the argmax function on three
possible values for action a (−1, 0, 1).

A.2.2 Robot Model and Motor Primitives

The Webots extended e-puck robot model shown in Fig. 5.1 and
described in Section 5.3.1 or Appendix B.2 is used in this chapter.
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Figure A.3: Evolution of the reservoir state x[t] over time as the operator arg max is
applied to the RC network from Fig. A.2. Dashed lines represent reservoir states which
generated suboptimal paths during the application of arg max operator. The real path
followed by the reservoir is given by solid lines.

Next, the changes of the e-puck model valid for this chapter
are presented. The extension turret has distance sensors capable of
measuring distances in the interval (0, 30] cm. The noise on sensors
is drawn from a normal distribution N(0, 3) cm. The robot has
2 stepper motors with maximum speed of 1000 steps per second,
which are steered by the following 3 motor primitives or basic
behaviors in the low-level control module: forward (left wheel: 500
steps/s; right wheel: 500 steps/s), left (left wheel: 250 steps/s;
right wheel: 500 steps/s), and right (left wheel: 500 steps/s; right
wheel: 250 steps/s). These motor primitives are executed for a
period of 11 timesteps in the simulator (704 ms). See Fig. A.4 for
a graphical representation of the trajectories given by each of the
motor primitives. It is relevant to observe that each primitive is
inherently stochastic once the robot wheels can not reproduce the
same trajectory due to non-systematic noise originated from wheel-
slippage or irregularities of the floor.

The motor primitives are designed to simplify the control task,
by reducing the action space to 3 discrete actions.
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Figure A.4: Motor primitives or basic behaviors: left, forward and right.

A.3 Experiments

The robot task is to learn context-dependent navigation attractors in
a partially observable environment. The environment is a rectangu-
lar arena with an obstacle between the robot and the goal location,
as it can be seen in Fig. A.5(a). During a simulation experiment,
each episode starts with the robot located in the upper part of the
room with position randomly chosen from a small interval defined
by the solid rectangle in Fig. A.5(b); the initial orientation of the
robot is South, with small uniform noise added in the range [0, 1.2]
degrees. The robot is controlled according to a ε-greedy policy. The
architecture is trained using the scheme depicted in Fig. A.1 and
explained in Sections A.2.1.

The task of the robot in this environment consists of navigat-
ing to the goal location, given by the light blue dashed box in
Fig. A.5(b), through the left or right part of the environment, shown
by black and gray dashed rectangles in the same figure, depending
on a previously received stimulus from the environment. This tem-
porary stimulus can be implemented through the presence/absence
of an object in the environment, the on/off of a light source, or the
existence/absence of a sound. In the current experiments, this is
simply implemented as an additional input signal to the reservoir
which is 1.5 whenever the trajectory towards the goal should be
done via the left side and −1.5 when the this trajectory should be
performed via the right side. This extra signal is present for 2.1 s in
the beginning of each episode, during which the robot is not able to
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Table A.1: Parameter configuration for RC network

Number of input channels ni = 10
Input connection fraction cri = 0.5
Input scaling υri = 0.14
Input downsampling dt = 1
Input to output connections yes

Bias connection fraction crb = 1
Bias scaling υrb = 0.2

Reservoir size nr = 400
Reservoir connection fraction crr = 0.1
Spectral radius ρ(Wr

r) = 0.9
Leak rate α = 0.1

Number of output channels no = 1
Output feedback to reservoir no

go left or right but only slowly forward (meant not to bias learning).
After the initial period of 2.1 s, this extra input becomes zero.

One episode is finished whenever the robot reaches the goal per-
forming the correct trajectory, hits against an obstacle, or when
the the length of the episode is greater than 60 timesteps. The re-
ward rt is always −1, unless the robot is at the goal location, when
rt = 0. When an episode ends, the input and desired output can be
computed according to equations (A.3) and (A.4).

A.3.1 Settings

Table A.1 shows the parameter configuration for the RC network.
The inputs u to the network are 8 frontal distance sensors, scaled to
the interval [0,1], an action a ∈ {−1, 0, 1} and an additional input
for the temporary stimulus.

The ε parameter for the policy, which corresponds to the proba-
bility of selecting random actions at each time step, is selected from
an arbitrarily chosen vector [0.9, 0.8, 0.6, 0.5, 0.4, 0.3, 0.1, 0.01], sim-
ilarly to Bush (2008). The particular timesteps in which ε changes
follows a learning schedule chosen as [40, 140, 190, 220, 240, 260,
310, 330]∗103 timesteps. This means, for instance, that during the
first 40.000 timesteps, ε = 0.9. The finite time horizon in (A.4) is
h = 40. The discount factor is γ = 1, which defines a shortest-path
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Figure A.5: Rectangular environment with an obstacle between the robot and
the goal location. (a) 3D environment in Webots, with the e-puck robot in the
upper part. (b) Representative map of the environment in two dimensions. The
box with a point inside represents the possible starting positions for the robot
(randomly chosen), while the black and gray dashed rectangles represent the
possible circumvention areas (dependent on the initial transient stimulus) which
the robot has to use to reach the goal, represented by dashed box in light blue
color.
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problem.
The regression learning procedure for the reservoir architecture is

executed every 1.500 timesteps considering the last E = 50.000 gen-
erated samples as learning window. These samples used for learning
are generated from the interaction of the reservoir with the environ-
ment, while samples resulting from random actions are not taken
into account during learning.

A.3.2 Results

In order to evaluate the proposed robot navigation task using
the RC network, the mean number of goals achieved per 2 × 103

timesteps considering left and right trajectories separately is shown
in Fig. A.6(a). As time evolves, exploration decreases and the num-
ber of goals achieved via left and right trajectories (represented by
black and blue lines, respectively) increases, which shows the capa-
bility of the architecture to learn short-term temporal dependencies
in robot navigation tasks.

In Fig. A.6(b), the mean number of achieved goals is computed
using a memoryless architecture, implemented by simply setting the
reservoir weights Wr

r to zero. It is possible to observe that the sys-
tem does not learn the task correctly, preferring the right trajectory
over the left trajectory in most of the experiments because the num-
ber of goals increases for the right navigation attractor (in blue) and
decreases for the left attractor.

A single RC network can model multiple navigation attractors in
a reinforcement learning task. These attractors, in the context of re-
inforcement learning, are dynamic, because the agent-environment
interaction changes over time. Fig. A.7 and A.10 show how these
dynamic attractors evolves during the learning process. In the be-
ginning, the two navigation attractors are not well formed, also be-
cause exploration is very high. In that stage, the system performs
several possible trajectories due to random actions. As the simula-
tion advances, the dynamic attractors are shaped so that the robot
reaches the goal location performing a trajectory which is dependent
on the initial temporary stimulus given at the beginning of the run.

Fig. A.8 shows the principal components resulting from applying
PCA on the reservoir states for the last episodes of simulation of
Fig. A.7. The principal component 3 encodes information used to



0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa

ls
 p

er
 2

00
0 

tim
es

te
ps

(a) RC network

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa

ls
 p

er
 2

00
0 

tim
es

te
ps

(b) The same network but without recurrent connections

Figure A.6: Average number of goals achieved per two thousand timesteps for
10 simulation experiments. The black lines represent the goals achieved via the
left trajectory, while the blue lines represent the goals achieved via right trajec-
tory. Error bars represent the standard deviation between runs. (a) Using the
reservoir architecture presented in this chapter. (b) Using the same architecture,
but without internal memory by setting Wres

res = 0.
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Figure A.7: A sequence of robot trajectories as learning evolves, using the RC network.
Each plot shows robot trajectories in the environment for several episodes during the
learning process. In the beginning, exploration is high and several locations are visited
by the robot. As the simulation develops, two navigation attractors are formed to the
left and to the right so that the agent receives maximal reward.
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Figure A.8: Three principal components (PC) over time after applying PCA
on the reservoir states, at the end of the simulation corresponding to last episodes
in Fig. A.7. The bottom plot shows the robot coordinates x, y over time in the
environment. The yellow vertical lines delimit different episodes. These plots
were made disregarding the initial timesteps where the temporary stimulus is
given, i.e., those initial timesteps were removed. The PC 3 encodes information
used to follow the correct trajectory (left or right), thus forming a short-term
memory responsible for holding the initial stimulus.
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Figure A.9: Sub-space attractors in the reduced dynamical system space for left and
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in the environment, which are dependent on the previously received transient external
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Figure A.10: Another sequence of robot trajectories as learning evolves, using
the RC network. Explanation as in Fig. A.7.
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follow the correct trajectory at the left or right side, thus forming
a short-term memory responsible for holding the initial temporary
stimulus. Fig. A.9 shows that, after convergence of the learning
process, the principal components form different trajectories (or sub-
space attractors) in the state space according to the past stimulus
given at the beginning of the episode.

Without the fading memory of the reservoir, it is not possible
to learn these navigation attractors correctly, because a memory-
less architecture does not hold the temporary stimulus for future
moments.

A.4 Conclusion

This chapter has shown that an RC network can be used to model
the state-action value function in non-Markovian navigation tasks.
The training procedure is similar to Bush (2008). In this chapter, I
relate that method to a policy iteration framework (policy improve-
ment + policy evaluation) (Lagoudakis and Parr, 2003), consisting
of an alternating sequence of simulation experiments for samples
generation and regression learning events.

The reservoir projects a non-Markovian input into a high-
dimensional non-linear state-space with temporal dynamics. This
dynamic state-space converts the non-Markovian environment into
a Markovian problem, as it automatically takes the history of the
input stream into account.

The non-Markovian task of the robot in this chapter is similar
to the T-maze task (Chapter 3) (Ulbricht, 1996) which requires a
temporal association of a past stimulus and a future delayed reponse.
However, the work in this chapter is more general since it requires
to learn the shortest path to a goal via a complex sensory-motor
coupling which depends on the initial temporary stimulus. In the
T-maze task the robot is confined to a very tight environment in
most scenarios and robot controllers for this task could exploit this
characteristic to facilitate the navigation task. On the other hand,
in this chapter, navigation attractors are formed by a non-trivial
sequence of basic behaviors (or motor primitives) which have to
control the trajectory of the robot towards the goal. It is a control
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task where wheel slippage may interfere negatively the trajectory.
Thus, the navigation system (RC network) must learn to perform
robust behaviors for task achievement.

There are several possibilities for continuation of this work. First,
experiments can be done with extended navigation tasks where the
robot navigates between multiple rooms of an environment, which
would allow to evaluate how the architecture scales to more complex
tasks. It would also be interesting to investigate how many naviga-
tion attractors a single reservoir network can learn and how this is
related to the size of the reservoir.

In the current chapter, the RC-based system learns to control
by generating a sequence of motor primitives which can lead to
collisions. An alternate method is to use as the motor primitives
low-level controllers such as Braitenberg vehicles (as in Chapter 5)
which automatically avoids obstacles. In this case, the search space
for navigation attractors would be hugely reduced, but not necessar-
ily to the desired sub-space of attractors. For instance, this alterna-
tive would be useful for confined environments, such as the T-maze,
but not necessarily for environments with open space which require
shortest-path trajectories to the goal. Experiments using Braiten-
berg vehicles as motor primitives in the navigation task from this
chapter indicate that it is not possible to converge to shortest path
trajectories, once the controllers tend to go torwards a wall and
follow the wall until it reaches the goal.

Finally, other techniques such as Slow Feature Analysis (Wiskott
and Sejnowski, 2002) (tackled in Chapter 7) could be investigated
in order to evaluate whether it can be used to autonomously form
spatial environment representations during the reinforcement learn-
ing process. In this case, the idea is the possibility of navigation
in large environments due to the feature extraction and localization
properties given by SFA.





B
Robot Models

Throughout this thesis, two robot simulators are used for accom-
plishing experiments: SINAR and Webots. The real e-puck robot
as well as its simulated version in Webots are used in experiments.

The data originated from the robot such as distance sensors and
actuators as well as from the environment (e.g., robot position) are
collected from the robot simulators or from the real e-puck robot.
These data are used to train and test RC networks in a Matlab
environment using the RCT Toolbox 1 (Verstraeten et al., 2007).

SINAR is described in Section B.1, whereas the (simulated and
real) e-puck robot model is presented in Section 4.2.1.

B.1 SINAR

B.1.1 Description

SINAR is a 2D autonomous robot simulator introduced in Antonelo
et al. (2006), where the mobile robot (Fig. B.1(a)) interacts with
the environment by distance and color sensors; and by one actuator
which controls the movement direction (turning). Most of the ex-
periments in this thesis consider models of environment and robots
in this simulator as follows.

The environment of the robot is composed of several objects,
each one of a particular color. Particularly, obstacles are represented

1This is an open-source Matlab toolbox for Reservoir Computing which is
freely available at http://www.elis.ugent.be/rct
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Table B.1: SINAR robot models

SINAR 1 SINAR 2 SINAR 3

No Dist. Sensors 17 3 7
No Color Sensors 17 3 7
Range of Dist. Sens. 300d.u. 300d.u. 300d.u.
Noise on sensors N(0, 3d.u.) N(0, 15d.u.) N(0, 15d.u.)
Speed 0.28d.u. [0, 17]d.u. [0, 17]d.u.

by blue objects whereas targets are given by yellow objects. The
robot model has 17 sensor positions 2 distributed uniformly over
the front of the robot, from -90◦ to +90◦. Each position holds
two virtual sensors for distance and color perception. The distance
sensors are limited in range such that they saturate for distances
greater than 300 distance units (d.u.), and are noisy - they exhibit
Gaussian noise N(0, 0.01) on their readings. A value of 0 means
near some object and a value of 1 means far or nothing detected. At
each iteration the robot is able to execute a direction adjustment to
the left or to the right in the range [0, 15] degrees and the speed is
equal to 0.28 distance units (d.u.)/s 3.

The 3 different robot models used in the SINAR simulator are
summarized in Table B.1.

B.1.2 Robot Controller

The SINAR controller, described in Antonelo et al. (2006), is a
reactive intelligent navigation system made of hierarchical neural
networks which learn by interaction with the environment. After
learning, the robot is able to efficiently navigate and explore envi-
ronments, during which the input signal u[n] for equation (2.1) is
built by recording the 17 distance sensors of the robot.

2The number of sensors may be different depending on the experiment. In
this case, the differences will be described with the experiment.

3The robot speed can also be modified depending on the experiment.
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B.2 E-puck

B.2.1 Description

The e-puck (Mondada, 2007) is a small differential wheeled robot
which was built primarily for education purposes, but has been
largely adopted in research as well. The mobile robot has a diame-
ter of 7 cm and is equipped with 8 infra-red sensors which measure
ambient light and proximity of obstacles in a range of 4cm − 5cm
originally, which effectively restricts the ability to read distances to
obstacles. Because of this, an extension turret for the real e-puck
robot has been built with 8 longer-range infra-red sensors capable of
measuring distances in the interval [4-30] cm (see Fig. B.1(d)). The
actuators of the robot are 2 stepper motors (steps/second), where
the maximum speed is 1000 steps per second.

The experiments in this thesis are accomplished with a simulated
version of the e-puck robot as well as with the real e-puck robot.
For simulations, we use the Webots software (Michel, 2004) which
provides a physics model of the e-puck robot (Fig. B.1(b)), i.e. the
simulator detects collisions and simulates physical properties of ob-
jects, such as the mass, the velocity, the inertia, the friction, the
spring and damping constants, etc.

In the simulator, the original e-puck model (Fig. B.1(b)) as well
as an extended e-puck model (Fig. B.1(c)) are used. These two
robot models can be organized in 4 configurations according to the
experiments in this thesis which consider different types of sensors:

• e-puck 1: original e-puck with a short-range sensor model
which measures distances up to 5cm;

• e-puck 2: original e-puck with a longer-range sensor model
which reads distances up to 15cm;

• e-puck 3: extended e-puck with a longer-range sensor model
which reads distances in the interval [5− 80]cm;

• e-puck 4: extended e-puck with a longer-range sensor model
which reads distances up to 80cm;

Table B.2 summarizes these 4 configurations or models. The velocity
of the simulated robot is limited to [0.6, 3] cm/s.



(a) SINAR (b) Original Webots e-puck

(c) Extended Webots e-puck (d) Extended Real e-
puck

Figure B.1: Robot models used throughout this work. (a) SINAR robot model with
distance and color sensors (usually in number of 17 of each type) positioned in the frontal
part of the robot (−90 to 90). (b) E-puck robot from Webots simulation environment.
(c) E-puck robot from Webots simulation environment, extended with simulated longer-
range infra-red sensors. (d) Real e-puck robot extended by an additional turret containing
8 infra-red sensors capable of reading distances from 4 cm to 30 cm.

Table B.2: Webots e-puck robot models

e-puck 1 e-puck 2 e-puck 3 e-puck 4

Range of Dist. Sens. [0− 5]cm [0− 15]cm [5− 80]cm [0− 80]cm
Robot Model (Fig. B.1) original original extended extended
Chapter 4 4 5 A
Task event detection localization localization &

navigation
navigation
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B.2.2 Robot Controller in Webots

The controller for the simulated e-puck robot is made of a simple
algorithm which follows points from a predefined trajectory in the
environment. Its speed can be 3 cm/s, 1.25 cm/s or 0.63 cm/s.

B.2.3 Robot Controller in Real Environments

For recording datasets containing the robot’s sensor readings, a con-
troller written in Matlab steers the e-puck robot through a Blue-
tooth connection. This controller performs basic wall following
throughout the environment and it switches randomly to left or
right wall following with a certain probability τ4. When the robot
switches from right to left wall (or vice-versa), it may generate ellip-
soid trajectories inside a room until it finds a wall to follow. Thus,
the robot may stay navigating inside a particular room for a ran-
dom time interval. The results shown in this chapter considers that
τ = 0.03, which practically means that there is a probability of
circa 60% for inverting the direction of movement while the robot is
navigating inside one of the rooms.

One iteration, for reading the distance sensors as well as for
motor actuation, lasts 200 ms. The speed actuator is limited to the
interval ±[15, 385] steps/s (or ±[0.198, 5.08] cm/s).

The eight distance sensors are sequentially read in groups of 2
while the robot is moving, that is, there are 4 cycles of sensors
reading, where each cycle corresponds to 2 simultaneous readings.
Considering an acquisition time of 25 ms on average for a cycle, the
total time spent on sensor reading is between 100 and 120 ms. Any
resulting inconsistencies from this sequential sensor reading during
robot movement are not corrected, so that learning has to cope with
this additional problem.

The input signal u(t) for the reservoir equation in (2.1) is built
by recording the eight distance sensors during robot navigation and
scaling them to the interval [0, 1]. For analysis purposes, the robot
position and orientation are estimated using pictures taken from a
fish-eye camera placed on a structure localized above the environ-
ment. Robot recognition and pose tracking are accomplished using

4τ is the probability of changing the movement direction at each second and
determines the randomness of the robot movement.
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the ReactiVision software (Kaltenbrunner and Bencina, 2007).
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