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Abstract

Physics-informed neural networks (PINNs) incorporate established physical principles
into the training of deep neural networks, ensuring that they adhere to the underlying
physics of the process while reducing the need for labeled data, since the desired output
is not a prerequisite for physics-informed training. For modeling systems described by Ordi-
nary Differential Equations (ODEs), traditional PINNs typically take continuous time as an
input variable and produce the solution to the corresponding ODE. However, in their original
form, PINNs neither accommodate control inputs nor do they effectively simulate variable
long-range intervals without experiencing a significant decline in prediction accuracy. In
this context, this work introduces a novel framework known as “Physics-Informed Neural
Nets for Control” (PINC). PINC presents an innovative PINN-based architecture tailored
to control problems, capable of simulating longer-range time horizons that are not predeter-
mined during training. This increased flexibility sets it apart from traditional PINNs. The
variable simulation time is achieved by adding inputs to the PINC network that convey the
initial condition and the control signal for a particular time interval. Simulating variable
long-range intervals involves running the PINC net across a sequence of shorter intervals. In
this autoregressive process, the network predictions are linked in a self-feedback mode, with
the initial state (input) of the next interval set to the last predicted state (network output) of
the previous interval. We showcase the effectiveness of our proposal in identifying and con-
trolling three nonlinear dynamic systems: the Van der Pol oscillator, the four-tank system,
and an electric submersible pump. Crucially, these experiments demonstrate that learning
the dynamics of these systems can be achieved without relying on any sample collected from
the actual process, and it offers faster inference speed compared to numerical simulations.

Keywords: Deep learning, Ordinary differential equations, Nonlinear model predictive
control, Learning with physics laws.

1. Introduction

In the era of Industry 4.0, simulation and control of complex real-world systems in smart
and efficient ways are becoming increasingly important. Thus, harnessing deep learning for
smart automation and control of real plants is desirable and inevitable. In this context, deep
neural networks can be employed as models in Model Predictive Control (MPC) [1]. MPC
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is a technique that has become standard for multivariate control in industry and academia
[2]. Since its inception in the 1970s, MPC has been successfully applied in the oil and gas
[3], aerospace [4] and process industries, as well as in robotics [5]. The main idea of MPC is
to control a system by employing a prediction model: at every iteration of the control loop,
an optimization problem is solved using a model of the plant in a receding horizon approach,
whereby only the control signals for the current time are implemented while the remaining
signals serve for prediction and to prevent poor long-term performance.

We consider two prominent cases for which practical application of MPC or even just
efficient simulation of a dynamic system are challenging: (a) historical data of the real plant
is sparse or insufficient to build a sufficiently accurate machine learning model; (b) the
numerical simulation of a precise model given by Ordinary Differential Equations (ODEs) or
Partial Differential Equations (PDEs) is too costly to be considered in a real-time application.
However, a recently introduced approach for training deep neural networks using laws of
physics, namely Physics-Informed Neural Networks (PINN) [6], is a promising approach to
address both of the aforementioned challenges. For the first challenge (a), we assume that a
priori knowledge built previously by experts or borrowed from the laws of nature is available.
For (b), instead of relying on numerical solutions of differential equations, PINNs can ease the
computational burden of solving ODEs or PDEs and, consequently, extend the application
of MPC to more real-time scenarios.

With PINNs, the need for labeled data is significantly reduced since their training is
not influenced only by labeled samples, but also by unlabeled input points evaluated using
physics laws given in terms of PDEs or ODEs. In this approach, the laws of physics constrain
the output of the deep network. The available differential equations describe the dynamics
of a system or industrial plant, which are included in the learning problem’s cost function as
nonlinear differential operators on the network’s output y. This way, through learning, the
output y will approach the solution of these ODE or PDE equations. For PINNs, the total
loss function comprises a data loss term based on labeled samples, usually the commonly
used regression residual, and a physics-informed loss term based on unlabeled collocation
points. The latter brings a regularization of the network, favoring scenarios where labeled
data is scarce, for instance. Effectively, PINNs allow solving complex PDEs or ODEs using
deep learning, although alternative approaches exist, which provides a symbolic solution to a
bilinear PDE [7, 8], or a data-driven Fourier neural operator for simulating PDEs at different
resolutions than the ones used in training [9]. Since the PINN’s proposal [6], many extensions
have been published. Zhu et al. [10] used PINNs for high-dimensional surrogate modeling and
uncertainty quantification without labeled data; Sirignano and Spiliopoulos [11] presented a
deep learning algorithm for solving PDEs; Meng et al. [12] proposed a parareal PINN for
time-dependent PDEs; Yang et al. [13] employed a Bayesian PINN for solving PDEs with
noisy data; Pang and Karniadakis [14] discussed the differences between Gaussian processes
versus neural networks on physics-informed learning machines; Stinis [15] used PINNs to
enforce constraints on time series prediction; Dwivedi and Srinivasan [16] proposed to extend
Extreme Learning Machines as physics-informed networks for rapidly learning solutions to
PDEs; Xiang et al. [17] proposed an improved PINN with a self-adaptive loss function to
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weight the loss terms relating to data and physics dynamically; Nazari et al. [18] introduced
a PINN architecture for modeling water flows in a river channel; Olivares et al. [19] applied
convolutional PINNs for WiFi signal propagation simulation.

A standard PINN has a continuous-time t as input, and the system’s state variables y
as output. To the best of our knowledge, there is no PINN architecture in continuous time
that allows optimal control techniques such as Multiple Shooting (MS) [20] and Model-based
Predictive Control (MPC) to be readily applied. Previous work used neural networks such
as Echo State Networks and Long Short-Term Memory (LSTM) networks as models of the
plant or process to be controlled [21]. However, these networks are trained exclusively on
labeled data collected from the considered system and, thus, are not sample efficient to the
extent PINNs are, as the latter can benefit from prior knowledge of the system’s physics
laws. In this sense, the challenge is to make PINNs compliant to control applications so that
they can serve as models of a plant or process in MPC. In their original form, PINNs neither
support control inputs nor do they effectively simulate variable long-range intervals without
experiencing a significant degradation in their predictions.

With those limitations in mind, our work presents a new framework called Physics-
Informed Neural Nets for Control (PINC), which proposes a novel PINN-based architecture
that is amenable to control problems. The main features of this framework are:

(i) our PINN-based architecture, called hereafter PINC net, is augmented with extra
inputs, such as the initial state of the system and control input, in addition to the
continuous-time t. This augmentation draws inspiration from the multiple shooting
and collocation methods [20], which are numerical methods for solving boundary value
problems in ODEs, which find a solution by splitting the time horizon into several
shorter intervals (shooting intervals). In our proposal, a single network learns the
ODE solution conditioned on the initial state and the given control input over the
shorter interval.

(ii) this innovation allows for enhancing the simulation capabilities of conventional PINNs,
which can not correctly sustain a simulation beyond the time interval that was fixed
during network training. This degradation of the network prediction is related to the
maximum value allowed for t, which is fixed at training time. However, our proposed
PINC network can simulate for variable longer-range time interval, without significant
deterioration of network prediction. This long-range simulation is achieved by chaining
the network prediction in a self-feedback mode by setting the initial state (input) of
the next interval k to the last predicted state (network output) of the previous interval
k − 1.

(iii) the proposed structure of PINC makes physics-informed networks in continuous time
amenable to MPC applications, which is the first work in the literature to tackle this
as far as the authors know.

(iv) finally, the real-time requirements for simulating differential equations, in particular
for MPC applications, are better satisfied with PINC than with traditional numerical
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simulation methods, since the inference of an already trained PINC network can replace
a numerical solution method at each timestep of the prediction horizon in MPC.

In the sequel, Section 2 presents some related works. Section 3 introduces PINNs, MPC, and
the proposed PINC framework. We present our proposal in the context of controlling three
nonlinear dynamic systems, the Van der Pol oscillator, the four-tank system and an Electric
Submersible Pump employed in oil wells, in Section 4. These experiments demonstrate that
the PINC network can effectively learn to model nonlinear dynamical systems with multiple
inputs and outputs. Furthermore, it does so faster than numerical methods, all without
relying on any sample collected from the actual process. As we will clarify in the following
sections, only knowledge of the underlying physics laws is required. Section 5 concludes
this work.

2. Related Works

2.1. Neural networks and MPC

Neural networks have been used as models in MPC tasks or as controllers that operate
dynamic systems. Previous works have trained neural networks to imitate MPC strategies
using the usual mean squared error cost functions [22, 23]. In [24], the control law is rep-
resented by a neural network approximator, trained offline to minimize a control-related
cost function directly, without the need to calculate a model predictive controller during
training.

In the vein of Recurrent Neural Networks (RNN), works such as [21] and [25] utilized Echo
State Networks as dynamical models for the MPC. Jordanou et al. [21] used a Trajectory
linearization approach [26] by derivating the input-output sensitivities along the nonlinear
free response over the prediction horizon to calculate a forced response [2]. In [25], the whole
ESN is approximated into a state space system to compute the control action. The same
reduction approach is proposed by Terzi et al. [27], however, employing LSTMs instead of
ESN.

Another example is the classical Approximate Predictive Control [28], where a feedfor-
ward neural network implements dynamics through the application of delayed outputs as
inputs (an external dynamics model [29]). It obtains an ARX (Auto Regressive with eXoge-
nous input) model from the network through derivation, and performs GPC (Generalized
Predictive Control) calculations per time step [2]. A neural network as the approximation
to an MPC is considered in [30], in the same vein as Akesson and Toivonen in [24].

2.2. Long-range simulation with PINNs

In [12], parareal PINNs are proposed for long-time integration of time-dependent PDEs.
They decompose a long-time problem into several short-time independent problems super-
vised by a fast coarse-grained solver, which provides approximate solution predictions at
discrete times. Several smaller, fine PINNs are trained in parallel with the help of the super-
vision given by the fast solver. Each PINN solves the problem for a particular time interval
independently. Notice that their approach does not include the possibility of control inputs
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and, thus, can not be readily used for control applications. On the other hand, while the
initial goal of our proposal is to extend PINNs for control, we also benefit from being able
to simulate a PINN for ODEs for a long time interval (we expect that our architecture can
be extended for PDEs, too).

2.3. PINNs for control

Since the first appearance of this work [31], some architectures based on PINNs for control
have been introduced. In [32], PINNs are supposedly used to control chaos in van der Pol
oscillating circuits. However, the circuits employed in their paper have no control input, and
neither does their method output a control signal to be applied. Their PINN architecture
still has only time t as input and has an unusual loss function, which includes the loss for the
data points and the reference to be followed. Surprisingly, we have not found any physics
law in the network training, making their network an ordinary one. Besides, no control input
can be derived from it to control a plant or dynamical system.

In [33], a model-based Reinforcement Learning (RL) algorithm for the first time, em-
ployed physical laws to learn the state transition dynamics of an agent’s environment. The
model corresponds to an encoder-decoder recurrent network architecture that learns the
state transition function by minimizing the violation of conservation laws. The actual sam-
ples (state-action data pairs and corresponding rewards) from the environment are used to
train the agent and the transition model simultaneously. In turn, the latter can generate
samples in an alternative replay buffer that ultimately improves sample efficiency in the RL
update and reduces real-world interaction. As the transition function is part of a Markov
Decision Process (MDP) formulation, it represents a discrete evolution of the environment
dynamics. For this reason, the physical loss function is built on the laws of the system in
their discretized form instead of the continuous form as proposed in our work. While they
require training a recurrent network, our work is based on feedforward networks as time
appears explicitly in the input here.

In [34], the authors employed PINNs to learn a control-oriented thermal model of a
building. As in [33], they assumed that the model is a discrete transition function in an
MDP that predicts the next state, given the current state and action. In that way, control
actions could be input into the model. Their physical loss also had to be discretized, unlike
our work. Although their proposal is control-oriented, they did not show actual control
experiments with the trained PINNs, as we do in Section 4.

3. Methods

3.1. Physics-informed Neural Networks (PINNs)

In [6], physics-informed neural networks are introduced, where deep neural networks are
trained in a supervised way to respect any physical law described by partial differential equa-
tions (PDEs). The PINN approach automatically allows one to find data-driven solutions
for PDEs or ODEs. In this paper, we consider nonlinear ODEs of the following general form:

∂ty + N [y] = 0, t ∈ [0, T ] (1)
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where N [·] is a nonlinear differential operator and y represents the state of the dynamic
system (the latent ODE solution).

We define F(y) to be equivalent to the left-hand side of Equation (1):

F(y) := ∂ty + N [y] (2)

Here, y also represents the output of a multilayer neural network (hence the notation y
instead of x) which has the continuous time t as input: y = fw(t), where fw represents the
mapping function obtained by a deep network parameterized by adaptive weights w. This
formulation implies that a neural network must learn to compute the solution of a given
ODE.

Assuming an autonomous system for this formulation, a given neural network y(t) is
trained using optimizers such as ADAM [35] or L-BFGS [36] to minimize a mean squared
error (MSE) cost function:

MSE = MSEy + MSEF , (3)

where

MSEy =
1

Ny

Ny∑
i=1

1

Nt

Nt∑
j=1

|yi(tj) − ŷji |2, (4a)

MSEF =
1

Ny

Ny∑
i=1

1

NF

NF∑
k=1

|F(yi(t
k))|2, (4b)

where: Nt, NF , and Ny correspond to the number of training data samples, the number of
collocation points, and the number of outputs of the neural network, respectively; yi(·) is
the i-th output of the network; ŷji represents the desired i-th output for yi(·), considering
the j-th data pair (tj, ŷji ). The first loss term MSEy corresponds to the usual cost function
for regression [37] based on collected training data {(tj, ŷji )}Nt

j=1, which usually provides the
boundary (initial or terminal) conditions of ODEs when solving these equations.

The second loss term MSEF penalizes the misadjusted behavior of y(t), measured by F(y)
in Equation (2), whereby F(y) imposes the physical structure of the solution at a finite set of
randomly sampled collocation points {tk}NF

k=1. Experiments show that the training data size
Nt required for learning a certain dynamical behavior is drastically reduced due to the a priori
information assimilated from MSEF . Since F(y) = 0 represents the differential equation of
the physical system, the term MSEF is a measure of how well the PINN adheres to the
solution of the physical model. This physics-informed approach provides a framework that
unifies a previously available theoretical, possibly approximate model and measured data
from processes, which can correct imprecisions in the theoretical model or provide sample
efficiency in process modeling.
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Figure 1: Representation of the output prediction at a time instant tk, where the proposed actions generate
a predicted behavior that reduces the distance between the value predicted by the model and a reference
trajectory.

3.2. Nonlinear Model Predictive Control

Model Predictive Control (MPC) has evolved considerably over the last two decades,
significantly impacting industrial process control. This impact can be attributed to its flex-
ibility in formulating the process control problem in the time domain, suitable for SISO
(Single-Input Single-Output) and MIMO (Multiple-Input Multiple-Output) systems. Soft
and hard constraints can be imposed on the formulation of the control law through opti-
mization problems while minimizing an objective function over a prediction horizon [38].

MPC is not a specific control strategy but rather a denomination of a vast set of control
methods developed considering some standard ideas and predictions [38]. Figure 1 shows
a representation of the output prediction at a time instant, where the proposed actions
generate a predicted behavior that reduces the distance between the value predicted by the
model and a reference trajectory.

The MPC strategy uses a discrete mathematical model based on the process of interest.
A predicted output is calculated in a prediction horizon by comparing the mathematical
model to the process’s output. To propose control actions, the MPC strategy uses an itera-
tive optimization process, considering the mathematical model of interest and the involved
constraints to which it is subject. Based on objectives and constraints, the optimization
problem comprises mathematical expressions established in the controller’s design phase,
taking many forms. Usually, quadratic functions penalize the error in the reference tracking.

According to Camacho and Bordons [2], there are several ways to classify these controllers,
taking into account characteristics such as model linearity, treatment of uncertainties, and
how the optimization problem is solved. This work focuses on the lack of model linear-
ity, particularly in Nonlinear Model Predictive Control (NMPC) [1]. The discrete NMPC
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formulation is given by:

J =

N2∑
j=N1

∥∥∥x[k + j]− xref [k + j]
∥∥∥2
Q
+

Nu−1∑
i=0

∥∆u[k + i]∥2R (5a)

while being subject to:

x[k + j + 1] = f(x[k + j],u[k + j]), ∀j = 0, . . . , N2 − 1 (5b)

u[k + j] = u[k − 1] +

j∑
i=0

∆u[k + i], ∀j = 0, . . . , (Nu − 1) (5c)

u[k + j] = u[k +Nu − 1], ∀j = Nu, . . . , N2 − 1 (5d)

h(x[k + j],u[k + j]) ≤ 0, ∀j = N1, . . . , N2 (5e)

g(x[k + j],u[k + j]) = 0, ∀j = N1, . . . , N2 (5f)

where k represents the time step at which the MPC problem is solved, x[k] is the recurrent
state of the dynamic system, which, for simplification purposes, is also the output (i.e.,
x = y), xref is the set-point signal over the prediction horizon (i.e., reference), being defined
by the first penalized instant k + N1 and the last instant k + N2. The cost function J is
the penalization on the quadratic error between the model output x and the reference xref

along the horizon, and the penalization on the control increment ∆u. The penalizations
are weighted by the diagonal matrices Q and R, respectively. Eqn. (5b) is the constraint
imposed by the considered state-equation model with x as the state, and equations (5e) and
(5f) refer to inequality and equality constraints imposed by functions h and g, respectively.
Eqn. (5c) defines the relation between the control action u and the control increments,
which are aggregated into the control action from time k up until time k + Nu − 1 (end of
the control horizon). Eqn. (5d) states that the control actions u from time k + Nu until
k +N2 − 1 (end of the prediction horizon) are fixed at the last action of the control horizon.

The optimization problem is defined by equations from (5a) to (5f), resulting in a Nonlin-
ear Programming (NLP) Problem, which can be solved using well-established methods like
Sequential Quadratic Programming (SQP) [39] and the Interior-Point (IP) method, available
in commercial [40] and non-commercial solvers [41]. The NLP is solved at each time step k,
and typical approaches only apply the first control increment into the system [2].

3.3. Physics-Informed Neural Nets-based Control (PINC)

Unlike PINNs that assume fixed inputs and conditions, the proposed PINC framework
operates with variable initial conditions and control inputs that can change over the complete
simulation, making it suitable for model predictive control tasks. The network is augmented
with two, possibly multidimensional inputs: control action u and initial state y(0), as illus-
trated in Figure 2. The output of the network is given by:

y(t) = fw(t,y(0),u), t ∈ [0, T ] (6)

where fw represents the mapping given by a deep network parameterized by weights w. This
work assumes the control input as a constant value for the time interval t ∈ [0, T ]. Thus,
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Figure 2: The PINC network has initial state y(0) of the dynamic system and control input u as inputs, in
addition to continuous time scalar t. Both y(0) and u can be multidimensional. The output y(t) corresponds
to the state of the dynamic system as a function of t ∈ [0, T ], and initial conditions given by y(0) and u. The
deep network is fully connected even though not all connections are shown, All hidden units have hyperbolic
tangent activation function.

the new formulation provides a conditioned response y(t) on u and y(0) during this interval
of T seconds.

Predictions by traditional PINNs tend to degrade rapidly for time intervals longer than
the one used in training. Thus, PINNs behave as expected as long as the time input t is
in the range the network was trained for (e.g., t ∈ [0, T ]). The proposed PINC framework
allows PINNs to extrapolate the simulation time for arbitrarily long periods. To simulate
longer intervals, when t > T , the total simulation time is divided by T , splitting it into
M intermediate time intervals of T seconds each (Fig. 3). Thus, the total simulation time
corresponds to MT s. We call this shorter period of T seconds as the inner continuous
time interval of the problem, in which a solution of an ODE is obtained given some initial
condition y(0) (which models the current system state) and control input u, which is kept
fixed for t ∈ [0, T ]. If the network was trained with only one initial condition and one
control action as training inputs, it would only learn to simulate this single scenario. As
the proposed PINC net will be trained with random multiple initial conditions and control
actions (Section 3.3.3), it will learn to predict any state y(t) in the interval t ∈ [0, T ] for any
combination of initial condition and control action applied in that interval. In other words,
this network output y(t) represents the ODE solution conditioned on control action u and
initial condition y(0) . In the next section, the solution to the complete interval of MT s is
built by chaining the predictions in an autoregressive way. This means that each of the M
intermediate inner simulation intervals is solved by the same PINC net, i.e., a single network
generates the predictions for each inner interval.

3.3.1. Autoregressive Simulation: Combining the Intermediate Solutions

As noted earlier, the complete interval comprises M intermediate continuous time inter-
vals of T seconds each, as shown in Figure 3. By changing notation, we refer to y[k] as
the states inferred by the network in discrete time k, seen at the top of the figure as black
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dots. Between two black dots, e.g., y[k] and y[k+ 1], the dashed trajectory connecting them
represents the continuous output y(t)1 of the PINC net for t ∈ [0, T ]. The corresponding
inputs of the network during this interval also appear in the lower part of the figure. Both
the initial condition and control action inputs are fixed in this inner interval, between steps
k and k + 1, and its intermediate solution is given by Equation (6). The time input t is the
only variable input in this inner interval.

The autoregressive part in PINC is represented by the red arrow in the figure and takes
place by setting the initial state of the next interval to the last predicted state of the previous
interval. Since t is an input to the network, the state at t = T can be directly inferred by
a single forward network propagation:

y[k] = fw(T,y[k − 1],u[k]), (7)

where the initial state at interval k is set to the last predicted state y(T ) of the previous time
interval k− 1, i.e., y[k− 1] (red arrow in Figure 3); and the control input u[k] indicates the
action applied in the inner continuous time interval between steps k−1 and k. This control
action can change from one step k to the next, enabling PINNs for control applications. The
above equation can be run recursively until the M intervals are complete, which is equivalent
to simulating the respective ODE for the total simulation time regardless of the fixed interval
T used in training, and with variable control actions between discrete timesteps. It is
worthwhile to notice that the autoregressive property of PINC is realized only in simulation
mode, after training.

3.3.2. PINC Simulation in MPC

The previously presented recursive simulation can produce predictions for MPC applica-
tions in a predictive autoregressive way. In this self-loop mode, network predictions y are
fed back as initial condition inputs y(0) at each discrete time step (Fig. 4a). As already
described, this feedback enables the simulation of the complete time interval of MT s. In the
context of MPC, M represents the prediction horizon. However, the initial state of the com-
plete interval must be defined somehow. In MPC, this value comes from the measurements
of the plant (Fig. 4b), which initiates the autoregressive simulation for a prediction horizon.
Thus, every simulation starts with the PINC connected to the plant (Fig. 4b) and runs until
the end of the prediction horizon in a self-loop mode (Fig. 4a).

Within one iteration of MPC, the PINC net is used for a specific prediction horizon
without feedback from the process. This means that the network prediction y[k − 1] and
not the real state ŷ[k− 1] is fed back as input to the same network in the next timestep k of
the prediction horizon (Fig. 4a). This is because the true state is unknown in the prediction
horizon of MPC.

A sampling period Ts must be chosen in discrete time control applications. The setting
of Ts usually depends on the particular dynamics of the process modeled. Here, T is equal
to the sampling period Ts. In addition, using Equation (7), we can encapsulate the PINC

1We omit the discrete index k of the inner time interval from y(t) for the sake of simplicity.
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Figure 3: Moving horizon prediction of PINC network in self-loop mode (Fig. 4a). The top dashed black
curve corresponds to a predicted trajectory y of a hypothetical dynamic system in continuous time. The
states y[k] are snapshots of the system in discrete time k positioned at the equidistant vertical lines. Between
two vertical lines (during the inner continuous interval between steps k and k + 1), the PINC net learns
the solution of an ODE with t ∈ [0, T ], conditioned on a fixed control input u[k] (blue solid line) and initial
state y(0) (green thick dashed line). Control action u[k] is changed at the vertical lines and kept fixed for T
seconds, and the initial state y(0) in the interval between steps k and k+1 is updated to the last state of the
previous interval k− 1 (indicated by the red curved arrow). The PINC net can directly predict the states at
the vertical lines without inferring intermediate states t < T as numerical simulation does. Here, we assume
that T = Ts and, thus, the number of discrete timesteps M is equal to the length of the prediction horizon
in MPC.

prediction function so that it is only a function of the control action u[k] and previous
prediction y[k − 1], making T implicit:

y[k] = f̂w(y[k − 1],u[k])

= fw(T,y[k − 1],u[k]) (8)

We call f̂w the control interface for the PINC framework. Thus, the Jacobian matrix
∂f̂w
∂u

can be computed and provided to solvers used in MPC, possibly employing automatic
differentiation. This control interface provides the prediction of the states of the dynamic
system at the vertical lines in Fig. 3, that is, at every Ts seconds, the state y[k] is predicted
in a single forward network propagation operation, for k = 1, ...,M (prediction horizon).
This prediction interface differs from numerical integration methods that need to integrate
over the continuous inner interval [42].

Since the prediction is fed back as an input at every discrete timestep, errors accumulate
in the long free run or when the MPC model (PINC net) is used in a future finite prediction
horizon to solve a constrained optimization problem. In this case, the prediction y[k − 1] is
fed back as no readings from the real process at a future time are possible (Fig. 4a). This is
not exclusive of this approach and is standard to recurrent neural networks or autoregressive
approaches. However, because MPC works in a receding horizon control approach, at every
timestep k of the control loop, the input y[k − 1] representing the initial state is set to the
system’s actual state ŷ[k− 1] (Fig. 4b). Thus, the prediction horizon in MPC always starts
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(a) PINC in self-loop or autoregressive mode
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u
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ref

(b) PINC connected to the plant

Figure 4: Modes of operation of a trained PINC network during the prediction phase. (a) PINC net operates
in self-loop or autoregressive mode, using its own output prediction as initial state y(0) of the next interval,
after T seconds. This mode can be used for variable long-range simulation. In the control context, this
operation mode is used within one iteration of MPC for trajectory generation until the prediction horizon
of MPC completes (predicted output from Fig. 1). (b) Block diagram for PINC connected to the plant.
One pass through the diagram arrows corresponds to one MPC iteration applying a control input u for Ts

timesteps for both plant and PINC network. Note that the initial state of the PINC net is set to the plant’s
actual output. In practice, in MPC, these two operation modes are executed alternately (optimization in
the prediction horizon and application of control action).

from the true initial state ŷ[k − 1], that is, Equation (8) becomes

y[k] = f̂w(ŷ[k − 1],u[k]) (9)

which counters error accumulation between consecutive control iterations.

3.3.3. Training

The training of PINC follows an offline approach similar to PINNs, with all training data
generated before the training starts. Upon completion of the training process, the trained
PINC can then be seamlessly employed as a model within Model Predictive Control (MPC).

The first loss term in Equation (3), which computes the prediction error with respect to
the data points (initial conditions), can be generalized to the PINC net as:

MSEy =
1

Ny

Ny∑
i=1

1

Nt

Nt∑
j=1

|yi(vj) − ŷji |2, (10)

where: the pair (vj, ŷj) corresponds to the j-th training example; vj = (t,y(0),u)j is the
whole input to the network (i.e., time, initial state, and control input); and ŷj is the target
output at time t for initial condition yj(0) and control input uj. Usually, this dataset
comes from measured data. However, in this work, we will show that if we assume that
the given ODE is an exact representation of the process, it is enough for this dataset to
contain only the initial conditions of the modeled ODE. For instance, one such training
data pair is ((0, 0.4, 0.6), 0.4), which means that at t = 0 the initial state is 0.4, the control
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input is 0.6, and the desired output is equal to the initial state (0.4). As all training data
pairs represent initial conditions, t = 0 for all points, whereas y(0) and u are randomly
sampled from intervals defined according to the modeled dynamic system. This means that
MSEy represents the mean squared error for all randomly sampled initial conditions of the
considered ODE and control inputs. Notice also that the input yj(0) is always equal to the
desired output ŷj in the training set, since the time input is always t = 0. In this way, the
network must learn from labeled data to reproduce the initial state yj(0) into the network
output y(vj) at t = 0. In practice, the assumption above allows training using randomly
sampled data to solve the ODE without requiring measured process data.

The second loss term in Equation (3), which is the physics-informed loss on the collocation
points (unlabeled points), is rewritten as:

MSEF =
1

Ny

Ny∑
i=1

1

NF

NF∑
k=1

|F(yi(v
k))|2, (11)

where vk corresponds to the k-th collocation point (t,y(0),u)k, where now all three types
of inputs (and not only the last two), i.e., time, initial condition, and control input, are
randomly sampled from their respective particular intervals. Specifically, the interval for t
is [0, T ], where T is the inner continuous interval of the PINC framework.

Basically, this formulation means that the PINC net is trained with data points that lie
on the boundary of simulations, i.e., only initial states of ODEs appear in the loss function
in Eq. (10). Practically, this does not require collecting data from ODE simulators. On
the other hand, the collocation points in MSEF serve to regularize the PINC net to satisfy
the behavior defined by F . Thus, in the training process, the PINC net is only directly
informed with an initial state in Eq. (10), while its physics-informed cost loss in Eq. (11)
must enforce the structure of the differential equation into its output y(·) for the remaining
inner continuous interval of T seconds (e.g., t ∈ (0, T ]).

Fig. 5 illustrates how the datasets for both data loss and physics-informed loss are gener-
ated. While the white dots, the initial conditions, are used to minimize the residual regression
MSEy, the red dots are the collocation points used to minimize the physics-informed residual
MSEF . For the former, the target output of PINC is the initial condition itself y(0). For
the latter, the target is not available. The figure also shows the different pairs of initial
conditions y(0) and control actions u that are randomly sampled in the interval of interest
of the application, forming the labeled training data points (white dots).

The total loss can be generalized to MSE = MSEy + λ · MSEF , where λ represents a
rescaling factor so that both terms are approximately in the same scale. Once the PINC net
structure, datasets and the losses are defined, the training process starts with the ADAM
optimizer [35] for K1 epochs and subsequently continues with the L-BFGS optimizer [36] for
K2 iterations in order to adapt the network’s weights w towards the minimization of MSE.
Notice that automatic differentiation is employed for the physics-informed term MSEF in
Eq. (11), using deep learning frameworks such as Tensorflow.

Training the PINC does not explicitly account for the autoregressive property, which
happens only in simulation mode. That is, there is no error backpropagation-through-time
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Figure 5: Illustration of a dataset generated for training a PINC net. There are M randomly generated
pairs of initial conditions y(0) and control actions u. For each one of them, a number of collocation points
is generated in the interval t ∈ [0, T ], represented by red filled dots. All labeled data points, given by white
dots, correspond to initial conditions t = 0, where each one is associated with a randomly generated pair of
y(0) and u as well. In practice, the NF randomly drawn collocation points used for computing MSEF are
independent of the Nt data points used to compute MSEy.

at the instant of feedback. Actually, no prediction feedback takes place during training since
the inputs to the network can be randomly sampled, immensely simplifying the training
process. By sampling enough data and collocation points and running the training properly
(e.g., long enough), the autoregressive simulation will happen naturally by chaining the
predictions in a self-loop mode in the test stage.

3.3.4. NMPC

After training, the PINC net is used as a model in nonlinear MPC, whose algorithm
appears in Section 3.2. Thus, the control interface function f̂w in Equation (8) replaces
Equation (5b) in the MPC formulation, redefining the notation of a dynamic system’s state
by the prediction given by the PINC network, i.e., x[k] = y[k]. After these substitutions, we
arrive at a Multiple Shooting (MS)-inspired formulation for the NMPC problem under the
PINC framework:

J =

N2∑
j=N1

∥∥y[k + j] − yref [k + j]
∥∥2
Q

+
Nu−1∑
i=0

∥∆u[k + i]∥2R (12a)

while being subject to:

y[k + j + 1] = f̂w(y[k + j],u[k + j]), ∀j = 0, . . . , N2 − 1 (12b)

u[k + j] = u[k − 1] +

j∑
i=0

∆u[k + i], ∀j = 0, . . . , (Nu − 1) (12c)

u[k + j] = u[k + Nu − 1], ∀j = Nu, . . . , N2 − 1 (12d)

h(y[k + j],u[k + j]) ≤ 0, ∀j = N1, . . . , N2 (12e)

g(y[k + j],u[k + j]) = 0, ∀j = N1, . . . , N2 (12f)
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3.4. Metrics

The PINC net prediction performance is evaluated on a validation set in self-loop mode
(Figures 3 and 4a). In particular, the generalization MSE is computed only at the discrete
time steps (vertical lines in Fig. 3):

MSEgen =
1

Ny

Ny∑
i=1

1

N

N∑
k=1

(
yi[k] − ŷi[k]

)2
, (13)

where: y[k] is the prediction of the PINC net given by Equation (8) and ŷ[k] is obtained
with Runge-Kutta (RK) simulation of the true model of the plant; N is the length of the
vector y; and the PINC net and the RK model receive the same control input signal u[k].

The control performance is measured by employing the Integral of Absolute Error (IAE)
on a simulation of C iterations:

IAE =
1

Ny

Ny∑
i=1

C∑
k=1

∣∣yrefi [k] − yi[k]
∣∣ (14)

and the Root Mean Squared Error (RMSE):

RMSE =
1

Ny

Ny∑
i=1

√√√√ 1

C

C∑
k=1

(
yrefi [k] − yi[k]

)2
(15)

where yrefi [k] is the reference value of yi[k] at timestep k.
The IAE is ideal for comparing simulation runs with the same reference signal, as the

sum of absolute errors is very sensitive to changes in control performance [43]. Meanwhile,
the RMSE can capture the average error behavior of the controller.

3.5. PINC Algorithms

In this section, an overview of the proposal is presented with the help of high-level
algorithms. Algorithm 1’s objective is training the PINC network. It uses data points and
collocation points (generated as described in Section 3.3.3) to minimize Eq. (10) + Eq. (11),
first with ADAM optimizer and then with L-BFGS optimizer.

The values for K1 and K2 are not critical for the training process in this work. ADAM
is used for a few initial iterations to speed up training, avoiding local minima, and the more
stable L-BFGS is used afterward until convergence. ADAM is run with a learning rate that
is halved every 100 epochs, starting at 10−3.

Algorithm 2 employs MPC with PINC using the minimization process (NMPC) described
in Section 3.3.4 for each timestep k out of C iterations (i.e., the total length of the reference
signal) to yield a control action u[k] to be applied to the plant.
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Algorithm 1: PINC Training Algorithm

input: K1, K2, F(·), {(vj, ŷj) : j = 1, . . . , Nt}, {vk : k = 1, . . . , NF};
initialize PINC weights w with Xavier normal distribution;
// Train with ADAM

for K1 epochs do
Compute the gradients of Eq. (10) + Eq. (11) (with F(·)) with respect to w
using the data points {(vj, ŷj) : j = 1, . . . , Nt} and collocation points
{vk : k = 1, . . . , NF};

Update w with ADAM optimizer and the obtained gradients;

// Train with L-BFGS

for K2 iterations do
Compute the gradients of Eq. (10) + Eq. (11) (with F(·)) with respect to w
using the data points {(vj, ŷj) : j = 1, . . . , Nt} and collocation points
{vk : k = 1, . . . , NF};

Update w with L-BFGS optimizer and the obtained gradients;
Save network w with the best performance seen so far on a validation set using
Eq. (13);

output: network w with lowest validation error;

Algorithm 2: MPC with PINC Algorithm

input: Q, R, Nu, N1, N2, y
ref , f̂w, x[0]

// Use the trained PINC to perform the control procedure

for k := 0, 1, 2, . . . , C do
Set initial state y[k] to the plant’s current state x[k];
Minimize (12a) s.t. (12b)—(12f), with respect to control u for reference yref at

timestep k, using the trained network f̂w as predictive model, control horizon
Nu, prediction horizon M = N2 −N1 + 1, and weight matrices Q and R;

Apply u[k] to the plant, obtaining the next states x[k + 1];

output: control action u
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4. Experiments

This section presents experiments regarding applying PINC to the modeling and control
of the Van der Pol Oscillator, the four-tank system, and an ESP-lifted oil well. The first
two dynamical systems are often considered for nonlinear analysis in the literature, and the
latter is used in real-world applications.

4.1. Van der Pol Oscillator

4.1.1. Model

The Van der Pol oscillator [44] is an ODE initially discovered by Balthazar Van der
Pol that had the original purpose of modeling triode oscillations in electric circuits. Since
then, the oscillator ODE has been used for other purposes, such as seismology and biological
neuron modeling [44], and as a standard proof-of-concept dynamical system for optimal
control applications [45]. The equations that govern the Van der Pol Oscillator are as
follows:

ẋ1 = x2 (16a)

ẋ2 = µ(1 − x2
1)x2 − x1 + u (16b)

where µ = 1 is referred to as the damping parameter, which affects how much the system
will oscillate, x = (x1, x2) is the system state, and u is an exogenous control action.

The open-loop Van der Pol oscillator has an equilibrium point at x̄ = (u, 0). The equi-
librium is stable for a constant u ∈ (−

√
3,−1) or u ∈ (1,

√
3). The oscillator also has a

limit cycle that can be perceived in polar coordinates [44]. In our experiments, we consider
x1, x2 ∈ [−3, 3] and u ∈ [−1, 1] for not being locally stable and containing the origin.

4.1.2. PINC Analysis

To find the most suitable configuration for the PINC net to control a dynamical system,
we propose first running grid search experiments over hyperparameters, such as the network
complexity and the number of data points (Nt) and collocation points (Nf ).

Here, the sampling time is chosen according to the particular dynamics of the Van der
Pol oscillator: T = Ts = 0.5 s. In our experiments, Nt = 1, 000 and Nf = 100, 000 provided
sufficient points to train a PINC net.

For training the PINC net, ADAM is used to optimize the loss function for K1 = 500
epochs, and afterward, L-BFGS is used for K2 = 2, 000 iterations to enhance the stability
of the training process. Note that this K2 does not exhaust the training so that it may be
increased before the final deployment of the PINC net. The parameter λ is set empirically
so that MSEy and MSEF are not in disparate scales. The validation dataset is composed
of 1810 points obtained using a randomly generated control action u (e.g., Fig. 10), which
is equivalent to 905s of simulation, since Ts = 0.5s. The validation or generalization error
considers the self-loop mode of PINC to compute Eq. (13).

The first experiment analyzes the network complexity (Fig. 6a) and shows the validation
MSE using Eq. (13) averaged over ten different random initializations of the network weights.
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In general, as the network grows deeper and with more neurons per layer, the performance
increases. Besides, layers with 3 or 5 neurons cannot model the required task. Note that these
errors would decrease even further if the training had continued for more epochs (correcting
the lower performance of the net of 10 layers with 15 neurons each, for instance). Although
the network of 10 layers with 20 neurons each achieves the best performance, we choose a
configuration of 4 layers with 20 neurons for the following experiments, which also achieved
excellent performance but with less computational overhead.
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Figure 6: Analysis of the PINC net for the Van der Pol Oscillator. The network training time is fixed to
a constant number of iterations. The MSE validation error is computed according to Equation (13). (a)
The log10 of the MSE error as a function of network complexity averaged over ten different simulations.
A deep network of 10 layers with 20 neurons each achieved the best generalization error (10−2.87). Note
that the performance increases as the network becomes deep and neurons are added to each layer. Besides,
layers with 3 or 5 neurons are not sufficient to achieve a satisfactory model. (b) The effect of the number
of collocation points Nf and data points Nt on generalization performance, averaged over five randomly
initialized networks. These experiments show that 40 data points are insufficient and the proportion Nf/Nt

should be significantly higher than 4 (hence the dark cells in the upper-right corner of the plot).

In Fig. 6b, the proportion between data points and collocation points is investigated.
Each error cell in the plot corresponds to the average of 5 experiments with randomly
generated networks. Clearly, 40 data points are insufficient, and the proportion Nf/Nt

should be considerably higher than 4 (hence the dark cells in the upper-right corner of the
plot).

4.1.3. Long-range Simulation

In order to showcase the capacity of long-range simulation of the proposed approach
compared with the conventional PINN, we trained traditional PINNs that have the same
complexity as the PINC net, i.e., 4 layers of 20 neurons each, but that have only one input t
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as usual for PINNs. A new PINN is trained for each interval considered T ∈ {0.5, 1, 2, 5, 10}
seconds. Note that these PINNs do not allow for arbitrary initial conditions after training,
as PINC nets do. Furthermore, once the interval value T is chosen before training for
conventional PINNs, further simulation beyond Ts rapidly deteriorates, as we shall see.

The PINNs were trained with the ADAM optimization algorithm for K1 = 500 epochs
initially with a learning rate of 0.0035, and then other K1 = 700× T epochs with a learning
rate of 0.001, and finally for K2 = 1, 000×T iterations of the L-FGBS optimization method.
In addition, the number of collocation points also increased with the value of T , Nf =
5, 000 × T . Thus, the longer the interval T , the longer the training and the higher the
number of collocation points employed. On the other hand, only one PINC network was
trained, following the configuration from the previous section, but for longer, as indicated in
Fig. 9.

In Fig. 7, the results are shown, which compare the trajectories of the single PINC net
that works for any considered interval T (e.g., shorter or longer than 10s) with the ones from
the PINN networks. The two rows in the plot correspond to the two states of the oscillator.
Each subplot involves training a new PINN from scratch for a specific T ∈ {0.5, 1, 2, 5, 10}
s, except for the PINC net, which is trained only once. Besides, the training of each PINN
considers a fixed control input u = 0.54 along the run, with fixed initial conditions x1 = −2.14
and x2 = 0.25, both randomly chosen. Unlike PINC, conventional PINNs must be retrained
from scratch if a different initial condition or control input is required.

In the plot of Fig. 7, the dots in the predicted PINC trajectories, in blue and pink colors,
mark the moments at which the final predicted states at T = 0.5 s are fed back as new
initial conditions and input to the network, corresponding to the vertical lines in Fig. 3.
Although PINC is trained with a fixed T = 0.5 s, its chained (self-loop) prediction enables
long-range simulation for an arbitrary simulation time T without fixing it beforehand as
with traditional PINNs, whose trajectory is shown by the dashed gray lines in the plots of
Fig. 7. Note that the target true trajectory of the dynamical system, drawn in a solid black
line, is entirely superimposed by the predicted PINC trajectory. In addition, observe that
only the PINN trained specifically with T = 10 s can simulate without degradation until 10
s, and not beyond that, for the given fixed initial condition and control input. That is, the
simulation from 0 s to 10 s of any PINN trained with T < 10 s shows that extrapolation
beyond the T s fixed at training time is unfeasible.

Fig. 8 presents the RMSE error for these experiments, making clear the high prediction
error obtained by the conventional PINN compared to the proposed PINC approach when the
T used for PINN training is lower than 10s. At T = 10 s, PINN has a slightly lower error
than PINC, likely because of the small accumulation of prediction errors during self-loop
simulation for PINC.

The control input u was fixed here to compare the conventional and new approaches.
However, PINC can have a variable u along the simulation, yielding an additional advantage
for allowing control applications, as showcased in the next section.
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Figure 7: Comparison between conventional PINN (dashed grey line) and proposed PINC (solid blue and
pink lines) for long-range simulation of the Van Der Pol oscillator with fixed control input u and fixed initial
condition x = (x1, x2) along the simulation. The target trajectories for states x1 and x2 are plotted in black
solid lines, which are completely superimposed by the PINC predictions y1 and y2. From left to right, the
PINN nets are trained with fixed T ∈ {0.5, 1, 2, 5, 10}s, while the PINC net is trained only once with T = 0.5
s even though it can run for arbitrary longer simulation times not fixed beforehand. The conventional PINN
can not extrapolate beyond its training time interval T . For instance, with T = 2 s, the simulation of the
resulting PINN from 0 s to 10 s fails to follow the system trajectory after 2 s.
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Figure 8: Performance comparison in terms of RMSE between the target trajectory of the Van der Pol
oscillator and the predicted trajectory for the PINN and PINC networks from Fig. 7 for a simulation of 10s.
The horizontal axis corresponds to the fixed T used for training the PINN network. These experiments show
that the conventional PINN yields a high prediction error in comparison with the proposed PINC approach
when the training time T of the PINN is lower than 10 s. With a training time T = 10 s, the PINN achieves
a slightly lower error than PINC, arguably because of the small accumulation of prediction errors during
self-loop simulation for PINC.
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4.1.4. PINC Control

The PINC net with 4 hidden layers and 20 neurons each is chosen for the Van der Pol
oscillator. Besides, we continue setting Nt = 1, 000, Nf = 100, 000, and K1 = 500, but the
training is extended with K2 = 20, 000 allows the MSE to settle in an asymptotic curve
(Fig. 9). For comparison, a vertical black dashed line is plotted in Fig. 9, indicating the
moment training would have stopped for earlier experiments from Fig. 6. Thus, further
training allows improving validation error (according to Equation (13)) at least one order of
magnitude. Note that the validation error continues to decrease as training follows, arguably
due to the regularization effect of MSEF in the loss function.
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Figure 9: MSE evolution during training of the final PINC net. Previous experiments from Section 4.1.2
stopped training at the vertical dashed line. The validation dataset consists of 1810 points or 90 s of
simulation since T = Ts = 0.5 s. The validation MSE is noisier because it is computed on a much smaller
dataset and in self-loop mode using Eq. (13).

We randomly generate a control input u for 10 s to view the PINC prediction after
training. In Fig. 10, the predicted trajectory is given for such a control input. With our
method, we can directly infer each circle in the trajectory using Equation (8) every T = 0.5
s. The trajectory between two consecutive circles can be predicted by varying the input t
of the network and keeping the other inputs y(0) and u fixed. The prediction matches the
target trajectory very well, as the latter is also plotted but superimposed by the former.

The resulting control from PINC can be seen in Fig. 11 in a simulation of 60s, where MPC
was employed to find the optimal value of the control input, considering a prediction and
control horizon of 5T (or 2.5s). The control parameters are given as follows: N1 = 1, N2 = 5,
Nu = N2, Q = 10I, and R = I. Here, the optimization in MPC to find a control input at the
current timestep uses the PINC network’s predicted trajectory for future timesteps, i.e., for
the prediction horizon of 2.5s. This procedure is repeated for all 120 points of the plotted
trajectory.

The controlled plant consists of the Van der Pol oscillator, whose states are obtained

21



0 2 4 6 8 10

Time (s)

−2

0

2

ou
tp
u
ts

y 1
,
y 2

Van der Pol prediction

−1.0

−0.5

0.0

0.5

1.0

in
p
u
t
u

Figure 10: PINC net prediction for the Van der Pol oscillator on test data. The gray dashed line gives
the randomly generated input u, while the predictions for the oscillator states x1 and x2 correspond to the
solid blue and pink lines, respectively. The target trajectory, from RK method, is also plotted in black but
is not visible as the prediction completely superimposes the former. Each dot in the predicted trajectory
corresponds to the vertical lines in Fig. 3 when the control action and initial state change (after Ts = T = 0.5
s).

by an RK integrator. Table 1 presents the control performance for a 60s simulation, which
also shows the result when the original ODE model serves as the predictive model in NMPC
instead of the PINC net. In this case, the classic, fourth-order Runge-Kutta method (RK4)
is employed as a numerical solution to compute the system states for NMPC. This means
that practically other approximations to the plant/system are not likely to improve the ODE
model itself, thus justifying our comparison to the baseline NMPC.

Remarkably, PINC practically achieves the same result as the ODE/RK approach regard-
ing RMSE and IAE, while being slightly faster on average when executed with 10 repetitions
on the same desktop computer. Notice that, for each reference r (dashed black signal), the
controller drives the oscillator toward the steady-state (x1, x2) = (u, 0) with u = r.

4.2. Four Tanks

4.2.1. Model

The four-tank system is a widely used benchmark for multivariate control systems [46], for
being a nonlinear and multivariate system with some degree of coupling between variables.
By setting its parameters to a given combination of values, it is possible to induce the system
to have non-minimum phase transmission zeros, which are an additional difficulty for PID
controllers [46].

As Figure 12 shows, the four-tank system comprises four tanks, denoted by the index
i ∈ {1, 2, 3, 4}, and two pumps j ∈ {1, 2} supplying each tank with water. Each tank has a
cylindric form with a basis area of Ai, and an orifice of area ai at the basis center. Tank 1 (2)
is located right below tank 3 (4) so that the flow ωi from the tank above goes directly to the
tank below. Both pumps are linear actuators controlled by the voltage uj with coefficient
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Figure 11: Control of the Van der Pol oscillator for 60s with PINC and with NMPC using the ODE/RK
model. A dashed black step signal gives the reference trajectory for x1, while for x2 the reference is kept at
zero (not shown). The controlled variables are the states x1 and x2 given by blue and pink lines, respectively.
These latter colors are used to show the control by PINC, while the baseline (ODE/RK model) is given by a
thick gray line. The control input u is the manipulated variable in the lower plot, found by MPC. For each
reference r (dashed black signal), the controller drives the oscillator toward the steady-state (x1, x2) = (u, 0)
with u = r. The control RMSE (IAE) errors for PINC and RK models were 0.1506 (123) and 0.1507 (121),
respectively. See text for more details.
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Figure 12: Schematic representation of the four-tank system, from [47].
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kj, converting the voltage into the pump flow. Pump 1 (2) is associated with a directional
valve that distributes the resulting flow into tanks 1 and 4 (2 and 3), which is the coupling
source in this system. The directional valves have an opening γj ∈ (0, 1), the fraction they
distribute to the bottom tanks. Adjusting γj is one of the main factors in regulating the
control problems associated with the system [46]. The state variables hi denote the water
levels in the tanks. The following equations govern the four-tank system, which are derived
from mass balance:

ḣ1 =
γ1k1u1 + ω3 − ω1

A1

(17a)

ḣ2 =
γ2k2u2 + ω4 − ω2

A2

(17b)

ḣ3 =
(1 − γ2)k2u2 − ω3

A3

(17c)

ḣ4 =
(1 − γ1)k1u1 − ω4

A4

(17d)

where the flow in each tank orifice ωi is described by the Bernoulli orifice equation, adding
the sole nonlinearity of the system:

ωi = ai
√

2ghi (18)

with g as the acceleration of gravity. The parameters used for this application are the same
as the ones stipulated for the non-minimum phase experiment in [46].

4.2.2. PINC Control

We have followed a similar approach to the first control problem concerning finding a
suitable configuration for network complexity and the proportion between data and collo-
cation points. We observed that 5 is the minimum number of layers to obtain sufficient
prediction performance for the four-tank system since it is a more complex plant, with mul-
tiple inputs and multiple outputs (MIMO) operating at different timescales. The following
experiments consider a PINC net with 5 layers of 20 neurons each. Besides, we continue
setting Nt = 1, 000, Nf = 100, 000, K1 = 500, and K2 = 20, 000. The sampling period is
T = Ts = 10 s. The control parameters are once again given by N1 = 1, N2 = 5, Nu = N2,
Q = 10I, and R = I.

After training the PINC net, the prediction on test data, with new randomly generated
control actions (not shown), is presented in Fig. 13. The deviation in prediction at longer
ranges, as seen in the first plot for h1 and h2, is expected since the network works in self-loop
mode, feeding its prediction of the last state back as input for the initial state (Fig. 4a),
every T = 10 s. Thus, the error accumulates in this chaining procedure. However, MPC uses
this trajectory only up to 50 s, equivalent to a prediction horizon of 5 steps, indicated by the
vertical dashed line in the figure, and the following optimization procedure in MPC resets
the initial state to the actual value as obtained by sensors of the physical process (Fig. 4b).

PINC’s control employs prediction and control horizons, both of 5 steps (50s in simulation
time) for the four-tank system. Besides, both h3 and h4 tank levels are constrained to the
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Figure 13: PINC net prediction in self-loop mode for the four-tank system on test data, with randomly
generated control input signals similar to Fig. 10. The predictions for the level of the tanks h1 and h2

correspond to the solid blue and pink lines, respectively. The target trajectories are plotted in dark, solid
lines without dots from the RK method. At each dot in the predicted trajectory, the PINC net receives new
inputs for control action and initial state (every Ts = T = 10 s), as explained in Fig. 4a. The vertical dashed
line indicates the prediction horizon used for MPC. Notice that PINC net predictions are highly accurate
for the prediction horizon (50 s) as they match the state trajectory obtained with the RK method.

interval [0.6, 5.5]cm. Fig. 14 shows the results. The top two plots present the controlled and
constrained tank levels, while the bottom plot depicts the control action found by the MPC.
The plots on the right-hand side show a close-up during the initial 160s of the simulation. The
control was successful despite the constraints imposed on h3 and h4 (which were respected)
and some minor errors in the steady-state regime, which can be countered by adding the
calculation of a correction factor through filtering the error between the measurement and
the network prediction, as done in [3] for a recurrent network. In Fig. 15, we use the same
simulation setup, focusing on the timesteps between 500s and 1300s, to compare with the
response (in yellow color) of the control using the plant reference model as a predictive
model in MPC. This ODE/RK-based model is the reference model that represents the plant
itself, which justifies the negligible steady-state regime error observed in the figure. It can be
noticed that the PINC simulation is very close to the nominal MPC given by the ODE/RK
model. This comparison suffices as another NMPC would employ an approximation of the
ODE/RK model as a predictive model.

Table 1 shows the control performance regarding RMSE and IAE. Although IAE seems
to differ more between PINC and ODE/RK, RMSE errors for both methods are almost
equivalent. The reported simulation times in this paper considered the execution on a Mac,
with 3.1 GHz 6-Core Intel Core i5 processor and 32 GB 2667 MHz DDR4. The average
time spent for the complete control simulation using PINC, repeated 10 times, 10.85s, is
23.3% inferior to using the ODE of the four tanks as a model for MPC (14.15s), which is
remarkable given that the PINC has an architecture of just 5 hidden layers with 20 neurons
each.
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Figure 14: Control of the four-tank system with PINC. The controlled variables are the tank levels h1 and
h2 given by blue and pink lines, respectively, whereas the reference trajectory for h1 (h2) corresponds to
the dashed black (gray) step signal. The control inputs u are the manipulated voltages shown in the lower
plot, found by MPC. Dashed gray horizontal lines represent the lower and upper limits for h3 and h4. Left:
simulation amounting to 2400s. Right: close-up on the first 160s. The initial conditions for h1 and h2 are
(2, 2), which is the minimum of the allowed interval [2, 20]. See text for more details.

Table 1: Results for two benchmark control experiments.

Van der Pol Four tanks
(4 layers of 20 units) (5 layers of 20 units)

RMSE IAE time (s) RMSE IAE time (s)
PINC 0.15 123.6 3.32± 0.15 0.811 876 10.85± 0.14

ODE / RK 0.15 122 3.41 ± 0.04 0.807 544 14.15 ± 0.13

4.2.3. Sensitivity to Perturbations

As introduced in this work, the PINC approach does not have an inherent method to
deal with modeling errors and completely reject disturbances, making these points valid for
future research. Nonetheless, the control algorithm can implement error correction filtering
[2] and Kalman filters [48] for robustness to model mismatch and to counter disturbances.

While works such as [49] and [50] are focused on proving stability theoretically through
the use of Lyapunov functions, we showcase the PINC robustness experimentally since our
focus is more on applications. To test the robustness of the proposed formulation to pa-
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Figure 15: Control of the four-tank system with PINC and the RK/ODE model for timesteps 500s to 1300s
from Fig. 14. All the yellow lines correspond to the simulation where the ODE model itself is the predictive
model (using a numerical solution at each timestep in the prediction horizon). In contrast, the remaining
lines refer to the simulation with PINC net as a predictive model. Though slightly different, the control
signals produced by the NMPC with PINC and RK/ODE follow the same patterns. Also, the simulation
of the state variables with PINC MPC is very close to the nominal MPC simulation given by the ODE/RK
model.

rameter mismatch, we performed a sensitivity analysis for the four-tank scenarios previously
presented. The analysis assumed random deviations in the values of the k1 and k2 param-
eters (see Eq. 17). The perturbed values k̃1 and k̃2 are sampled from uniform probability
distributions U5%(a, b) = [0.95x, 1.05x], with x being the nominal value for training the
PINN.
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Altogether, 151 simulations were carried out by injecting the deviations in the system.
The results are shown in the first column of Fig. 16 for two different networks, one with
5 hidden layers of 20 neurons each and another with 8 hidden layers of 20 neurons each.
Despite the random variation of the parameters k1 and k2, one can see that the IAE of
the system has variations within a tolerance range considered adequate. Fig. 17 shows the
control of the four tanks when the plant controlled has the maximum deviation of 5% in k1
and k2 parameters, showcasing that the perturbation only slightly bias the trajectories.

A second experiment consisted of perturbing the initial condition with a uniform dis-
tribution. The perturbed initial conditions for h1 and h2 are sampled from U5%(a, b) =
[0.95x, 1.05x], with x being the nominal value 9 for both states. Fig. 16 shows these results
in the second column. The peak of the histogram approximately coincides with the IAE
obtained by the unperturbed model of the plant. Thus, other initial conditions can imply
relatively lower or higher IAE. Notice that the bottom plots show instances with lower IAE,
evidencing the higher accuracy of a deeper network, with 8 hidden layers, in this particular
situation.

In summary, the sensitivity experiments imply that the system’s performance does not
degrade regarding IAE. Since the PINC control strategy has no integrators, a small steady-
state error that depends on model match is expected. Because the model mismatch increases
as the parameters k1 and k2 are driven away from their nominal values, the steady-state error
is expected to be higher but still within an acceptable range of IAEs.

4.3. Electric Submersible Pump

4.3.1. Model

An Electric Submersible Pump (ESP) is a type of pump installed in oil wells to enable
or increase production, typically if the reservoir pressure is not sufficiently high to sustain
the flow from the bottomhole to the top side. Figure 18 depicts the schematic of an ESP.
The ESP has some advantages that make it a popular choice. The pump can produce high
liquid volumes with relatively high efficiency and low maintenance. Furthermore, it is well
suited for use in various locations, from urban environments to offshore installations and in
deviated wells. However, the installation of an ESP requires a reliable power source and the
presence of gas and materials like sand can compromise its operation.

The mathematical model for ESPs considered here is based on the model developed by
Statoil (now Equinor) in [51] with additional equations from [52] for viscosity modeling.
The system model consists of an ESP and a production choke valve. The principles of ESP
operation are relatively simple. The pressure gradient imposed by the difference between the
reservoir pressure pr and the well bottomhole pressure pbh, (pr−pbh), induces the inflow qr of
a mixture of fluids (oil, water, and possibly gas) from the reservoir into the well. It reaches
the ESP pump, which increases the pressure gradient by regulating the pump frequency f ,
thereby lifting the production to the top side. The pressure upstream of the production
choke is the wellhead pressure pwh, regulated by the choke opening z to ensure the pressure
balance with the fixed manifold pressure pm. An operator can control the ESP frequency f
and the production choke opening z to reach a desired production target, typically achieved
by tracking a reference for the bottomhole pressure informed by the optimization system.
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Figure 16: Sensitivity to modeling errors (left) and to initial conditions (right) for the MPC of the four-tank
system with PINC net as the model. For each plot, 151 runs of the MPC algorithm using a trained PINC net
of 5 layers (top plots) and 8 layers (bottom plots) are executed. The resulting IAEs between the references
(as in Fig. 14) and the controlled signals h1 and h2 are computed and shown in a histogram. The initial
conditions are h1 = h2 = 9 , which is the middle point of the allowed interval.

The model assumes constant fluid properties to keep the controller design relatively simple
[51].

The ESP dynamic model considers reservoir inflow, production pipe, ESP, and production
choke. Despite neglecting effects related to gas production and viscosity variation, the model
can represent well dynamics quite accurately [51]. The system has three states: bottomhole
pressure pbh, wellhead pressure pwh, and average flow rate q. The differential equations are
as follows:

ṗbh =
β1

V1

(qr − q) (19a)

ṗwh =
β2

V2

(q − qc) (19b)
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Figure 17: Control of the four-tank system with PINC as in Fig. 14, but with maximum perturbation of 5%
in k1 and k2 parameters of the model being controlled. Initial conditions as in Fig. 16, that is, h1 = h2 = 9.
Control results were adequate even though the IAE was 1022, which is in the tail of the histogram from
Fig. 16(a) left plot.

q̇ =
1

M
(pbh − pwh − ρghw − ∆pf + ∆Pp) (19c)

where ∆pf is the pressure loss due to friction, ∆Pp is pressure gain from the ESP, hw is
the total vertical length of the well, ρ is the density of the produced fluid, and g is the
gravitational acceleration constant. The differential equations come with a set of constraints
known as algebraic equations involving variables and parameters. Hence, the ESP model is
a Differential Algebraic Equation (DAE) system. According with the DAE system, the influ-
ence of the pump frequency f on the ESP pressure gain ∆Pp is a highly nonlinear function.
Similarly, the flow qc through the choke is governed by a nonlinear function involving the
bottomhole pressure, manifold pressure, and choke opening. To keep the presentation brief,
a complete description of the ESP model’s variables, parameters, and algebraic equations is
found in Appendix A.
4.3.2. PINC for ESP

The inner continuous interval for PINC is T = 1
11

s. The ranges for the randomly
generated control signals and initial conditions are as follows: f ∈ [35, 65] Hz and z ∈ [0.1, 1];
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Figure 18: Schematic of an electric submersible pump. The pressure gradient imposed by the difference
between the reservoir pressure pr and the well bottomhole pressure pbh, (pr − pbh), induces the inflow qr of
fluids from the reservoir into the well. The ESP lifts the fluids to the topside by adding energy regulated
by the pump frequency f , which generates a pressure gain. The wellhead pressure pwh corresponds to the
pressure upstream of the production choke, regulated by the choke opening z to ensure pressure balance
with the fixed manifold pressure pm.

and pbh ∈ [70 × 105, 75 × 105] bar, pwh ∈ [25 × 105, 35 × 105] bar, q ∈
[

30
3600

, 50
3600

]
m3/h. We

performed a Bayesian search using Optuna [53] over three hyperparameters: the number of
collocation points Nf ∈ [20000, 40000], the number of layers (from 3 to 6), and the number
of neurons per layer (from 20 to 50). The following experiments consider a PINC net with 4
layers of 49 neurons each, whose training employed the settings Nt = 10, 000, Nf = 32, 631,
λ = 1, K1 = 10, 000, and K2 = 20, 000. Besides, the inputs t, y(0) and u to the network
were normalized before performing signal propagation through the network and the residuals
F(·) employed denormalized output predictions y as well as inputs (t, y(0) and u).

The PINC prediction for the ESP system on the test input can be seen in Fig. 19 for
2.64 s, where the control signal corresponding to the production choke opening z, starting
at 0.6, is changed four times to the arbitrary values 1, 0.5, 0.73, 0.61, and 0.88, respectively.
The pump frequency was kept fixed at f = 57 Hz for this particular simulation.

The average prediction time of the trained PINC over 50 simulations was 0.025 s with
standard deviation of 0.007 s, while the RK numerical simulation took 0.262 s on average with
standard deviation of 0.02 s (Table 2, column “Prediction”). Thus, our PINC can be at least
one order of magnitude faster the RK method, without considering further optimizations of
the PINC inference time (e.g., using BLAS libraries).

4.3.3. PINC Control

We address the control problem of following a reference signal for the bottom-hole pres-

31



72

74

p b
h
[b
ar
]

27.5

30.0

p w
h

[b
ar
]

0.0 0.5 1.0 1.5 2.0 2.5

Time (s)

40

45

q
[m

3
/h

]

RK

PINC

Figure 19: Long-range autoregressive PINC prediction for the ESP system’ states: bottom-hole pressure,
wellhead pressure of the well, and the production flow (from top to bottom). The production choke opening z
(not shown) is manipulated to change five times to arbitrary values every 4T s (0.45 s) during this simulation,
while the pump frequency f is kept constant at 57Hz. The prediction is autoregressive every T s or at every
blue dot. For the points in the continuous interval between any two consecutive blue dots, the PINC
prediction for the states is done just by changing the time input t and setting the initial condition as the
terminal condition of the previous interval.

Table 2: Results from ESP simulation and control experiments.

Prediction Control
RMSE time (s) RMSE (bar) IAE (bar) time (s)

PINC 0.1569 0.025± 0.007 2.44 ± 1.49 198.1 ± 134 36 ± 8.5
RK – 0.262 ± 0.02 – – –

sure of the ESP-lifted well, considering both the pump frequency f ∈ [35, 65] Hz and the
production choke opening z ∈ [0.1, 1] as manipulated variables for the controller. The ranges
depicted are the operational ranges considered as constraints by the NMPC. Since there are
two degrees of freedom, even if the reference signal for the bottom-hole pressure is followed,
the closed-loop system may behave erratically for other involved variables. Therefore, for the
NMPC of the ESP, considering Problem (12), we add a penalization on the wellhead pressure
pwh increment in the cost function. We also add rate limiting constraints for |∆f | ≤ 6 Hz
and |∆z| ≤ 0.2 on the manipulated variables.

We configured the controller to have a sampling time Ts = 3/12 s 2, a control horizon and
a prediction horizon of size 7 (N1 = 1, N2 = 7, Nu = N2) , and Q = 1 and R = I. The
reference signal pbh,ref is a random stair signal that has a value between 65 and 85 bar. The

2We did not have to retrain the network, since we can perform the self-loop 3 times with a PINC trained
with T = 1/11 s when Ts = 3/12 s.
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simulation runs for 200 time steps (50 s), with the signal changing at a minimum period of
10 time steps.
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Figure 20: Result of the NMPC for the ESP system with the PINC as the prediction model. The reference
signal (dashed line) was chosen at random within the interval pbh,ref ∈ [65, 85] bar. The first plot shows the
bottom-hole pressure (pbh), the second plot depicts the wellhead pressure of the well (pwh), and the third
plot showcases the well production flow (q).

Figure 20 depicts the state variables of the ESP, namely pbh, pwh, and q along the simu-
lation, with pbh being plotted alongside its associated reference signal. The topmost subplot
shows that the closed-loop system can smoothly follow the reference signal, no matter how
large the difference between the current and previous value. Notice that the wellhead pressure
(second plot) is not quite constant due to the lack of a tracking reference and corresponding
error penalization in the cost function. Nevertheless, the wellhead pressure is sufficiently
smooth due to the increment penalization introduced in the cost function. The behavior of
the production flow q is a direct consequence of the settings of the two previous variables
(see Eq. 19), showing a behavior that converges to a constant value. The initial conditions
for this experiment were f = 45 Hz, z = 0.7, pbh = 75 bar, pwh = 35 bar, and q = 40 m3/h.
Figure 21 gives plots for both manipulated variables, f and z, along the same simulation,
showing that the controller manipulates the pump frequency more often than the choke
opening.

Table 2 shows results for 10 repetitions of 200 timesteps of the ESP control experiment,
with the aforementioned settings and same initial conditions, but considering randomly
generated reference signals. The average and standard deviation of the IAE and the RMSE
are computed for the pbh tracking error, as well as the average execution time for the whole
control experiment.

Although the experiments have a high variance, the simulations are within the expected
range of performance since the mean value of the IAE is close to 200, which is the number of
simulated time steps . This good performance is corroborated by the RMSE, which achieved
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Figure 21: Plot of the choke opening z (first subplot) and pump frequency f (second subplot) during the
simulation of the control.

a low mean error. The execution time is also reasonable for an NMPC that computes
predictions using a static neural network.

As with the other examples, we tried employing the NMPC directly on the DAE model
of the ESP using the Runge-Kutta solution method. However, the NMPC was not able to
converge. The inability of the NMPC to converge might be attributed to the fact that the
ESP model has very complicated nonlinearities (see Appendix A) that are challenging for
numerical optimization algorithms, such as the square root, with a derivative approaching
infinity as its argument draws close to zero, and the max function, which is non-smooth.

4.4. Discussion

PINC solves a family of ODE for variable initial condition and control inputs, becoming
“time independent.” To our knowledge, this was the first work to propose the architecture
for control tasks, particularly for NMPC applications. Using PINC in NMPC instead of
solving ODEs and DAEs in the optimization process brings some advantages. PINC is a
smooth and differentiable function of the inputs, simplifying the numerical computations
that otherwise would be needed to solve a DAE system, for instance, which may involve
solving implicit algebraic equations and complex functions such as square roots, fractional
exponents, and ratios. This was shown in the previous section, where the control of the
ESP was made feasible with PINC, while the corresponding RK model used in MPC was
unfeasible because of the resulting ill-conditioned formulation of the optimization problem
with the DAE as a model.

One of the main obstacles of having a fully effective simulation from a PINC network
is the long training time of such networks. Nonetheless, this is a common issue in most
proposals dealing with deep learning, especially PINNs. Preliminary work in identifying
more complex plants (e.g., in the oil and gas industry) shows that skip connections [54, 55]
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can help the training of deep networks by helping to backpropagate the gradient to the
deepest layers during training, further improving the precision of the final trained model.
It is worth noting that, after training a deep PINC model, it can predict directly any state
in the range [0, T ] without requiring integration with intermediate points as in numerical
simulation methods.

Besides, we noticed that a precise optimization algorithm towards the end of the training
(e.g., L-BFGS) is essential in obtaining an accurate model. Furthermore, challenges to
learning PINNs can arise from discontinuities in the ODE equations that model the plant,
such as the presence of the max operator. Moreover, the random initialization of the weights
of neural networks may cause different results and render invalid arguments to functions such
as the square root if present in the ODE equations. Notice that some fixes or workarounds
can be applied in these cases.

5. Conclusion

We have proposed a new framework that makes Physics-Informed Neural Networks
(PINNs) amenable to control methods, such as MPC, opening a wide range of application
opportunities. This Physics-Informed Neural Nets-based Control (PINC) approach allows a
PINN to work for arbitrary longer-range time intervals that are not fixed beforehand at train-
ing stage, doing so without severe prediction degradation. In practice, PINC extends PINNs
to work with MPC applications. In control applications, this framework (a) provides a way
to identify a system by integrating collected data from a plant with a priori expert knowl-
edge in the form of ordinary differential equations; (b) can simulate differential equations
faster than numerical solution methods, making PINNs more appealing to real-time control
applications. This speed advantage will probably increase as more complex applications are
tackled, as already verified when modeling PDEs with conventional PINNs. PINC-based
applications have also reported an increase in speed of at least one order of magnitude [56],
which is similar to the reduction in prediction time we reported in the ESP experiment.
Additional optimization of the network inference code using BLAS libraries could further
reduce the network’s inference time. Although only initial conditions were used as actual
training data, additional sparse data will likely make the training of PINC nets much faster.

In future work, we intend to extend the framework to systems described by Differential-
Algebraic Equations (DAEs) and PDEs, and systems for which prior knowledge is uncertain
(unknown parameters), as well as apply PINC to industrial control problems such as in
the oil and gas industry, for which some prior knowledge of ODEs is known in addition to
highly noisy or sparse data. We expect that the reduction in the computational burden
in using PINC for control scenarios will be even more relevant compared to the numerical
solution approach as the model becomes increasingly more complex or, in the case of models
described by PDEs [57]. Finally, we envision that the application of system identification in
an industrial setting will expand if we use complementary sources of information for training
deep networks, that is, by using physical laws and historical sparse data, making feasible a
wide range of previously unsolved applications in systems and control.
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Appendix A. ESP Algebraic Equations

The algebraic equations associated with the dynamic equations of the ESP model are
presented below according to their properties.

• Flow equations:

qr = PI(pr − pbh) (A.1a)

qc = Cc z
√
pwh − pm (A.1b)

• Friction equations:

∆pf = F1 + F2 (A.2a)

Fi = 0.158
ρLiq

2

DiA2
i

(
µ

ρDiq

) 1
4

(A.2b)

• ESP equations:

∆pp = ρgH (A.3a)

H = CH(µ)

(
c0 + c1

(
q

CQ(µ)

f0
f

)
− c2

(
q

CQ(µ)

f0
f

)2(
f

f0

)2
)

(A.3b)

c0 = 9.5970 · 102 (A.3c)

c1 = 7.4959 · 103 (A.3d)

c2 = 1.2454 · 106 (A.3e)

where CH(µ) and CQ(µ) are 4th order polynomial functions on the viscosity µ with
coefficients defined in [52].
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Table A.3: ESP Model variables

Control inputs
f ESP frequency
z Choke valve opening

ESP data
pm Production manifold pressure
pwh Wellhead pressure
pbh Bottomhole pressure
pp,in ESP intakepressure
pp,dis ESP discharge pressure
pr Reservoir pressure

Parameters from fluid analysis and well tests
q Average liquid flow rate
qr Flow rate from reservoir into the well
qc Flow rate through production choke

The state and algebraic variables involved in the ESP model appear in Table A.3. The
parameters used in this model are based on the parameters from [52]. Table A.4 presents
the parameters which consist of fixed values such as well dimensions and ESP parameters,
and parameters found from analysis of fluid such as bulk modulus βi and density ρ [52].
Parameters such as the well productivity index PI, viscosity µ, and manifold pressure pm
are assumed constant.
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Table A.4: ESP Model Parameters

Well dimensions and other known constants
g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
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A2 Cross-section area of pipe above ESP 0.008107 m2
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h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

ESP data
f0 ESP characteristics reference freq. 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W

Parameters from fluid analysis and well tests
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus below ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa

Parameters assumed to be constant
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s
Pm Manifold pressure 20 Pa
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[24] B. M. Åkesson, H. T. Toivonen, A neural network model predictive controller, Journal
of Process Control 16 (2006) 937–946. doi:10.1016/j.jprocont.2006.06.001.

[25] Y. Pan, J. Wang, Model predictive control of unknown nonlinear dynamical systems
based on recurrent neural networks, IEEE Transactions on Industrial Electronics 59
(2012) 3089–3101. doi:10.1109/TIE.2011.2169636.
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