
D
R

A
FT

Learning Slow Features with Reservoir Computing for Biologically-inspired Robot
Localization

Eric A. Antonelo, Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent University, Ghent, Belgium e-mail: eric.antonelo@elis.ugent.be

Abstract

This work proposes a hierarchical biologically-inspired architecture for learning sensor-based spatial representations of a robot
environment in an unsupervised way. The first layer is comprised of a fixed randomly generated recurrent neural network, the
reservoir, which projects the input into a high-dimensional, dynamic space. The second layer learns instantaneous slowly-varying
signals from the reservoir states using Slow Feature Analysis (SFA), whereas the third layer learns a sparse coding on the SFA layer
using Independent Component Analysis (ICA). While the SFA layer generates non-localized activations in space, the ICAlayer
presents high place selectivity, forming a localized spatial activation, characteristic of place cells found in the hippocampus area of
the rodent’s brain. We show that, using a limited number of noisy short-range distance sensors as input, the proposed system learns
a spatial representation of the environment which can be used to predict the actual location of simulated and real robots, without the
use of odometry. The results confirm that the reservoir layeris essential for learning spatial representations from low-dimensional
input such as distance sensors. The main reason is that the reservoir state reflects the recent history of the input stream. Thus,
this fading memory is essential for detecting locations, mainly when locations are ambiguous and characterized by similar sensor
readings.

Keywords:
Reservoir Computing, Slow Feature Analysis, Independent Component Analysis, Place cells, Robot localization

1. Introduction

Traditional neural network models were designed to process
static spatial input patterns, and are not inherently able to han-
dle time-varying stimuli or dynamic patterns. To cope with
temporal problems, these networks model time as an additional
spatial dimension by dividing time into bins such that, for ex-
ample, a 5-bin time window yields an input layer size of 5Ni (Ni

is the number of input signals). In this way, time is treated as an
additional spatial dimension at the level of the inputs, which is
not a biologically plausible approach (Buonomano and Maass,
2009). In a second approach for representing time, neural net-
works models with recurrent connections allowed for computa-
tion based on the previous state of the network and the current
sensory input, providing a mechanism of temporal context that
still considered time as a discrete dimension (Buonomano and
Maass, 2009).

The current work is based on the Reservoir Computing (RC)
paradigm (Verstraeten et al., 2007), where a non-linear dynam-
ical system (e.g. a recurrent neural network) is used to map the
inputs to a high-dimensional space, in which classificationor
linear regression is easily accomplished. Therefore, the states
of this dynamic reservoir are linearly combined in an output
layer, which is the sole trained part of the architecture. This
type of state-dependent computation has been proposed as a bi-
ologically plausible model for cortical processing (Buonomano
and Maass, 2009; Maass et al., 2002; Yamazaki and Tanaka,

2007). Such theoretical models include:Echo State Networks
(Jaeger and Haas, 2004) for analog neurons andLiquid State
Machines (Maass et al., 2002) for spiking neurons. From a
machine learning perspective, a reservoir network, usually ran-
domly generated and sparsely connected, functions as a tempo-
ral kernel, projecting the input to a dynamic non-linear space.
During simulation, the reservoir states form a trajectory which
is dependent on the current external sensory input, but which
still contains memory traces of previous stimuli. Computation
in the output layer occurs by linearly reading out instantaneous
states of the reservoir. In this way, reservoir architectures can
inherently process spatiotemporal patterns.

Most reservoir computing models use supervised learning
schemes to train the readout output layer. In this case, linear
regression is the standard technique used for output training
(Jaeger and Haas, 2004). However, biological systems proba-
bly learn a great number of tasks in an unsupervised way. Slow
Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) is an
unsupervised learning method based on the concept of slow-
ness. It extracts invariant or slowly-varying representations of
a high-dimensional input signal, and has been shown to be able
to model properties of complex cells from the primary visual
cortex V1 (Berkes and Wiskott, 2005).

In this work, we propose a hierarchical architecture, where
the first layer comprises a sparsely connected reservoir network
with internal dynamics, and the second layer consists of SFA
units. The short-term memory of the reservoir and its non-linear

Preprint submitted to Neural Networks (in press) October 3, 2011

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

projection in conjunction with such an unsupervised learning
technique yields a model which possesses advantages from both
theoretical models: the inherent spatiotemporal processing ca-
pabilities of the reservoir as well as the slowly-varying hid-
den signal extraction of the SFA model. This architecture is
called RC-SFA model, first introduced in Antonelo et al. (2009)
and Antonelo and Schrauwen (2009). This paper considerably
extends previous works by making an elaborate investigation
of the RC-SFA model, a range of insightful experiments (also
showing the importance of the reservoir), and a comprehensive
analysis of the localization capability mainly with respect to
real-world robot experiments.

The slowness extraction mechanism present in SFA allows
that high-level concepts, such as the position or orientation of
a subject inside a room, which are slowly varying in time, be
generated from low-level fast-varying stimuli like vision. In the
same way, the location of a mobile robot inside an environment
can be predicted from vision, but also from distance sensors, for
instance. Supervised learning approaches using RC for robot
localization based only on distance sensors have already been
developed in Antonelo et al. (2008, 2007). This work goes be-
yond that by using SFA for learning slowly-varying spatial rep-
resentations in an unsupervised way from a high-dimensional
reservoir space, which is excited by the robot’s distance sen-
sors.

In our architecture, SFA units show an activation which is
spatially non-localized in the considered environment, that is,
after training, their activation is high for multiple and specific
locations of an environment, showing low place selectivity. A
second step is necessary for producing units which are only
active for particular locations. In Franzius et al. (2007a)an
additional post-processing step using Independent Component
Analysis (ICA) is applied for learning sparse representations
from SFA units. Similarly, in this work, ICA is used in the third
layer for generating localized representations of a robot envi-
ronment. The complete architecture is shown in Fig. 1.

Experiments accomplished with freely moving rats in circu-
lar or rectangular open fields show the existence of two types
of spatial encoding cells in the brain of rodents: hippocampal
place cells and grid cells from the entorhinal cortex. Placecells
form an implicit spatial representation of an animal’s environ-
ment, firing whenever the rodent is located at a particular lo-
cation (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Moser
et al., 2008), which defines the place field of the cell. Another
type of spatial activation is found in grid cells of the entorhinal
cortex. The activation of these cells have shown to follow a grid
pattern in circular open fields and probably have an important
role in the formation of place cells (Moser et al., 2008).

It is assumed that two classes of input are available for spatial
encoding cells: idiothetic and allothetic. While allothetic inputs
are originated from the external environment (vision, tactile
and auditory signals), idiothetic input could be formed by self-
motion (proprioceptive) signals. The origin of these idiothetic
signals and the mechanisms for the integration of these signals
with allothetic input have not yet been determined (Moser etal.,
2008).

Although the majority of the existing place cell models are

not dependent on the animal’s direction of movement, there are
few experiments showing that place cells exhibit movement-
related firing patterns such that the environment configuration
and the animal’s behavior can impose a directional structure in
the firing of place cells (Eichenbaum et al., 1999). In Brunel
and Trullier (1998), it is proposed that place cells are intrin-
sically directional and that invariance to direction is achieved
through generalization. In Frank et al. (2000), using a con-
strained environment for rats such as W tracks, it is shown that
hippocampal CA1 cells and entorhinal cortex (EC) cells code
for spatial information on a way dependent to the rat’s path or
behavior. It assumes that, if the hippocampus and EC are re-
lated to path planning over extended trajectories, these struc-
tures should reflect where the animal intends to go or where it
has come from. Similarly, the proposed RC-SFA architecturein
this work encodes positional information on a path-dependent
way, where the SFA layer and ICA layer exhibit an activation
pattern comparable to that of EC cells and hippocampal CA1
cells found in Frank et al. (2000), respectively.

The current work is inspired by the fact that whiskers of ro-
dents can provide relevant information about the environment
and shape of objects (Solomon and Hartmann, 2006). In the
same way, the experiments in this paper are based on a small
mobile robot which perceives the environment through a lim-
ited number of short-range distance sensors. We assume that
this low-dimensional input, such as whiskers for rats or distance
sensors for robots, can provide interesting information from the
environment.

In mobile robotics, the problem of robot localization is usu-
ally referred as the SLAM problem, which stands for Simulta-
neous Localization And Mapping. In our architecture, the robot
localization capability emerges in a self-organized way atthe
upper ICA output layer. Distinct ICA outputs code for different
locations in the robot’s environment after learning. Is this lo-
calization capability comparable to standard robot localization
frameworks such as Markov localization (Thrun et al., 2005)or
Kalman filtering techniques (Siegwart and Nourbakhsh, 2004)?
It is comparable to some extent, with advantages and disad-
vantages of each approach. Probabilistic approaches to robot
localization, usually based on expensive laser-range scanners,
have to take into account the following points: the modeling
of the noise of each sensor, the kinematic model of the robot,
the costly drawing of a priori map of the environment or a
mechanism for map building during navigation, matching sen-
sory data to the stored map representation for the correction of
position estimation, and so on. In contrast to this, models of
biologically-inspired localization and navigation systems, such
as artificial neural networks-based models, tend to overcome
these limitations and costly processes by learning implicit rep-
resentations of the environment from sensor data.

In traditional localization algorithms, the representation of
the stored map can be grid-based, topological, or hybrids (Sieg-
wart and Nourbakhsh, 2004). Grid-based methods produce
metric maps and have high resolution, while topological maps
are more abstract and describe the environment as a graph of
connected nodes. The advantages of probabilistic models are:
easy human interpretation of the robot position in the stored

2

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

map; accurate descriptions of the map for grid-based meth-
ods (Siegwart and Nourbakhsh, 2004); and efficient planning
in topological maps (Thrun et al., 2005). Given some as-
sumptions, state-of-the-art algorithms, such as the FastSLAM
method (Thrun et al., 2005), are able to solve the SLAM prob-
lem. Although this work does not aim to solve the SLAM prob-
lem, it is an interesting biologically-inspired model which can
autonomously learn locations in an environment from a limited
number of inexpensive infra-red distance sensors. Furthermore,
the proposed model does not depend on the use of odometry, but
it is based on the powerful temporal processing of the reservoir
as a form of short-term memory of previous inputs.

This paper is organized as follows. Section 2 describes
the methods used in this work, namely, Reservoir Computing,
Slow Feature Analysis and Independent Component Analysis,
as well as the robot models and the place cell reconstruction
method used in the experiments. Sections 3 and 4 describe
the experiments performed with simulated and real robots, re-
spectively, using the RC-SFA architecture. Finally, Section 5
presents the conclusions, related works and future directions
for research.

2. Methods

2.1. Reservoir Computing

The Reservoir Computing (RC) model for analog neurons,
the Echo State Network (Jaeger, 2001), is modeled by the fol-
lowing state update equation:

x(t + 1) = (1− α)x(t) + α f ((W inu(t) +Wresx(t))), (1)

where:u(t) denotes the input at timet; x(t) represents the reser-
voir state;α is the leak rate (Jaeger et al., 2007);

and f () = tanh() is the hyperbolic tangent activation function
(the most common type of activation function used for reser-
voirs).

Connections between units in the reservoir are represented
by the weight matrixWres, while the inputs’ connections to the
reservoir are given byW in. The initial state of the dynamical
system isx(0) = 0. The above equation considers that reser-
voir units are leaky integrators (Jaeger et al., 2007). A standard
reservoir equation is found whenα = 1.

The input weight matrixW in as well as the reservoir weight
matrix Wres are not trained during the simulations but, instead,
they are generated from a random distribution, such as a Gaus-
sian distribution or a discrete set. The dynamic regime of the
reservoir has traditionally been tuned by scaling the connection
matrixWres such that its spectral radius|λmax| < 1, where|λmax|

is the largest absolute eigenvalue ofWres (Jaeger, 2001). Al-
though it does not guarantee the Echo State Property (e.g. a
reservoir with fading memory), in practice this criterium pro-
duces good reservoirs. Besides the reservoir weight matrix, the
dynamics of the reservoir is determined by several factors:the
input scaling ofW in, an optional bias, the nonlinearity of the
nodes and the external input driving the reservoir (Verstraeten
and Schrauwen, 2009).

In this work, the dynamics of the reservoir is tuned by empir-
ically choosing the input scaling forW in as well as the spectral
radius ofWres, which is fixed at|λmax| = 0.99 for all experi-
ments. Further optimization on these parameters are shown in
Section 4.2.4, which also indicates that the chosen empirical
values are close to the optimum.

Usually, the connection matricesW in and Wres are cre-
ated considering sparse connectivity, but that is not mandatory
(Schrauwen et al., 2008).

There are two ways to increase the memory of a reservoir
without output feedback. It is possible to either tune the leak
rateα ∈ (0, 1] of the reservoir (Jaeger et al., 2007) for match-
ing the timescale of the input signal or downsample the in-
put signal. Low leak rates yield reservoirs with more mem-
ory which canremember the previous stimuli for longer time
spans. On the other hand, leak rates close to 1 are suitable for
high-frequency input signals which vary in a faster timescale.
Sometimes a combination of reservoir units possessing distinct
leak rates can improve performance (Antonelo et al., 2008),for
example, when the input signal consists of components operat-
ing in distinct timescales. Other approaches include the use of
band-pass filters in reservoir units (Wyffels et al., 2008) which
allow for very specific frequency sensitivity. The configuration
of several parameters are given in subsequent sections.

The readout output layer in reservoir systems is usually
trained with linear regression methods such as the Least
Squares method or Ridge Regression, which are supervised
methods. The training uses a matrix whose rows are made of
the reservoir’s states generated during the stimulation ofan in-
put signal in the reservoir. In this work, the output layer is
replaced by a SFA layer which learns in an unsupervised way.
This method is described in the following section.

Next, considerNu as the number of inputs;Nresas the number
of neurons in the reservoir;NSFA as the number of SFA units;
andNICA as the number of ICA units.

2.2. Slow Feature Analysis

Most sensory input signals vary in a fast timescale, even
though the environment properties may be slowly varying. This
is because sensors provide low-level representations of envi-
ronment features and are prone to fast signal variations, e.g., a
human moving inside an office produces fast visual input varia-
tion while his/her position in the building changes slowly. Slow
Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) is an al-
gorithm which finds output functionsgi(x(t)) which maximize
temporal slowness, given a high-dimensional input signalx(t).
It extracts functions which provide a higher level representa-
tion of the environment, assuming that they vary in a slower
timescale when compared to the raw input. The SFA output is
an instantaneous function of the input so that it depends only
on the current state, differently from a filter which depends on
previous inputs.

In mathematical terms (Wiskott and Sejnowski, 2002), the
SFA model tries to find output signalsyi = gi(x(t)) such that:

∆(yi) := 〈ẏ2
i 〉t is minimal (2)

3

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Figure 1: RC-SFA architecture. The reservoir is a recurrentnetwork where
the inputs are mapped to a high-dimensional non-linear space. The resulting
reservoir trajectory, generated by input stimulation, is used for training the SFA
layer, which extracts instantaneous slowly-varying signals from the reservoir
after learning. The subsequent ICA layer implements sparsecoding on the SFA
outputs, extracting independent components from the SFA activation. Training
is unsupervised and takes place for the dashed connection lines in the figure.
Solid lines represent fixed randomly generated weights.

under the constraints

〈yi〉t = 0 (zero mean) (3)

〈y2
i 〉t = 1 (unit variance) (4)

∀ j < i, 〈yiy j〉t = 0 (decorrelation and order) (5)

where〈.〉t and ẏ denote temporal averaging and the derivative
of y, respectively.

Learning: The first step of the learning process is normaliz-
ing the input signalx(t) to have zero mean and unit variance.

The common step of non-linear expansion of the input signal
is not used in this work, but it is replaced by the non-linear
reservoir at the first layer of the RC-SFA architecture. It can
be shown that SFA learning corresponds to solve a generalized
eigenvalue problem (Wiskott and Sejnowski, 2002):

AW = BWΛ, (6)

whereA := 〈ẋẋT 〉t andB := 〈xxT 〉t.

The eigenvectorsw1,w2, ...,wNSFA corresponding to the or-
dered generalized eigenvaluesλ1 ≤ λ2 ≤ ... ≤ λNSFA solve the
learning task, satisfying (3-5) and minimizing (2) (see Wiskott
and Sejnowski, 2002, for more details). This algorithm is guar-
anteed to find the global optimum. Learning and inference is
very fast, as there are efficient methods for solving the general-
ized eigenvalue problem. The decorrelated SFA outputs extract
instantaneous slowly-varying signals, which is different from
low-pass filtering of the inputs.

Although the eigenvalue problem for solving SFA is biologi-
cally unrealistic, biologically plausible implementations of SFA
exist(Hashimoto, 2003).

Architecture: The SFA layer in our architecture (Fig. 1) is
denoted byySFA(t):

ySFA(t) =WSFAxSFA(t), (7)

wherexSFA(t) is the input vector at timet consisting of a con-
catenation of inputu(t) and reservoir statesx(t). Note that the
statesx(t) are generated by stimulating the reservoir with the
input signalu(t) for t = 1, 2, ...,Ns by using (1), whereNs is the
number of samples.

The weight matrixWSFA is aNSFA × (Nu + Nres) matrix cor-
responding to the eigenvectors found by solving (6).

2.3. Independent Component Analysis
Independent Component Analysis (ICA) is a method used for

sparse coding of input data as well as forblind source separa-
tion (Hyvärinen and Oja, 2000). The ICA model assumes that
a linear mixture of signalsx1, x2...xn can be used for finding the
n independent components or latent variabless1, s2...sn. The
observed valuesx(t) = [x1(t), x2(t)...xn(t)] can be written as:

x(t) = As(t) (8)

whereA is the mixing matrix ands(t) = [s1(t), s2(t)...sn(t)] is
the vector of independent components (bothA ands(t) are as-
sumed to be unknown). The vectors(t) can be generated after
estimating matrixA:

s(t) =Wx(t) (9)

whereW = A−1.
The basic assumption for ICA is that the componentssi are

statistically independent. It is also assumed that the indepen-
dent components have non-Gaussian distributions (Hyvärinen
and Oja, 2000).

Learning: In this work the matrixW is found with the
FastICA algorithm (Hyvärinen and Oja, 2000). Before us-
ing ICA, the observed vectorx(t) is preprocessed by centering
(zero-mean) and whitening (decorrelation and unit variance)
(Hyvärinen and Oja, 2000). FastICA uses a fixed-point itera-
tion scheme for finding the maximum of the non-Gaussianity
of wx(t) (wherew is a weight vector of one neuron). The basic
form of the FastICA algorithm (for one unit) is described next:

1. Initializew randomly
2. Letw+ = E{xg(wT x)} − E{g′(wT x)w}
3. Letw = w+/‖w+‖
4. Do steps 2 and 3 until convergence,

where g is the derivative of a nonquadratic functionG
(Hyvärinen and Oja, 2000). Convergence means that vectors
w+ andw point in the same direction. The next unitswi in W
are found one by one such that the outputswT

i x are decorre-
lated.

Whereas the FastICA algorithm may seem biologically un-
realistic, an alternative biologically plausible implementation
of ICA can be achieved through non-linear Hebbian learning
(Hyvärinen and Oja, 1998).

Architecture: The equation for the ICA layer is (by redefining
variables):

yICA(t) =WICAySFA(t), (10)

where:ySFA(t) is the input vector at timet (the observed values);
WICA is the mixing matrix (NICA × NSFA); and yICA(t) is the
output of the ICA layer (the independent components).

4

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

(a) SINAR (b) E-puck

Figure 2: (a) SINAR robot model with distance and color sensors positioned in
the frontal part of the robot (−90 to 90). (b) E-puck robot with an additional
turret with 8 infra-red sensors capable of reading distances from 4 cm to 30 cm.

2.4. Robot Models

2.4.1. SINAR
SINAR is a 2D autonomous robot simulator introduced in

Antonelo et al. (2006), where the mobile robot (Fig. 2(a)) inter-
acts with the environment by distance and color sensors; andby
one actuator which controls the movement direction (turning).
The SINAR robot model has seventeen (17) sensor positions
distributed uniformly over the front of the robot, from -90◦ to
+90◦. Each position holds two virtual sensors for distance and
color perception. The distance sensors are limited in rangesuch
that they saturate for distances greater than 300 distance units
(d.u.), and are noisy - they exhibit Gaussian noiseN(0, 0.01)
on their readings. A value of 0 means near some object and a
value of 1 means far or nothing detected. At each iteration the
robot is able to execute a direction adjustment to the left orto
the right in the range [0, 15] degrees and the speed is constant
(0.28 distance units (d.u.)/s). The SINAR controller, described
in Antonelo et al. (2006), is a reactive intelligent navigation
system made of hierarchical neural networks which learn by in-
teraction with the environment. After learning, the robot is able
to efficiently navigate and explore environments, during which
the signalu(t) is built by recording the 17 distance sensors of
the robot.

2.4.2. Real robot e-puck

The e-puck (Mondada, 2007) is a small differential wheeled
robot which was built primarily for education purposes, buthas
been largely adopted in research as well. The mobile robot has
a diameter of 7 cm and is equipped with 8 infra-red sensors
which measure ambient light and proximity of obstacles in a
range of 4 cm originally, which effectively restricts the ability to
read distances to obstacles. Because of this, an extension turret
for the e-puck was built with 8 longer-range infra-red sensors
capable of measuring distances in the interval [4-30] cm (see
Fig. 2(b)).

For recording datasets containing the robot’s sensor readings,
a controller written in Matlab steers the e-puck robot through a
Bluetooth connection. This controller performs basic wallfol-
lowing throughout the environment and it switches randomlyto
left or right wall following with a certain probabilityρ. When
the robot switches from right to left wall (or vice-versa), it may
generate ellipsoid trajectories inside a room until it findsa wall
to follow (see Fig. 8(b)). One iteration, for reading the distance

sensors as well as for motor actuation, lasts 200 ms. The actu-
ator sets the speed (steps/second) of a stepper motor, where the
maximum speed is 1000 steps per second. In this work, the ac-
tuator is limited to the interval±[15, 385] steps/s (or±[0.198,
5.08] cm/s).

The eight distance sensors are sequentially read in groups of
2 while the robot is moving, that is, there are 4 cycles of sensors
reading, where each cycle corresponds to 2 simultaneous read-
ings. Considering an acquisition time of 25 ms on average for
a cycle, the total time spent on sensor reading is between 100
and 120 ms.

Any resulting inconsistencies from this sequential sensor
reading during robot movement are not taken into account when
using the RC-SFA architecture, so that learning has to cope with
this additional problem.

The signalu(t) is built by recording the eight distance sensors
during robot navigation and scaling them to the interval [0, 1].

For analysis purposes, the robot position and orientation are
estimated using pictures taken from a fish-eye camera placed
on a structure localized above the environment. Robot recogni-
tion and pose tracking are accomplished using the ReactiVision
software (Kaltenbrunner and Bencina, 2007).

2.5. Place cell reconstruction

It is common to use population vector coding for interpreting
activation from hippocampal place cells (Zhang et al., 1998).
However, Bayesian methods have shown superior performance
for reconstructing the position of freely moving rats and were
shown to be biologically plausible (Zhang et al., 1998). In
this work, we use a probabilistic method based on Zhang et al.
(1998) to estimate the robot position from the activation ofICA
units of our architecture. The reconstruction is based on the
conditional probability

P(xr |yICA) =
P(yICA |xr)P(xr)

P(yICA)
. (11)

The priorP(xr) is the probability of the robot being at position
xr = (x, y) and can be computed with the true recorded posi-
tion during robot navigation.P(yICA) is a normalization term
which does not need to be explicitly computed.P(yICA |xr) is
the probability of the activationyICA given that the robot is at
locationxr . As ICA unitsyICA are statistically independent, the
conditional probability can be computed as:

P(yICA |xr) =
NICA∏

i=1

P(yi
ICA |xr) (12)

whereP(yi
ICA |xr) is the probability of ICA uniti given that the

robot is at positionxr , which can be approximated by comput-
ing the histogram of the dataP(yi

ICA |xr) = 〈yi
ICA〉xr /µ, where

〈yi
ICA〉xr is the mean activation of ICA uniti in positionxr and

µ is a normalization factor.
The reconstructed position is given by:

x̂r = arg max
xr

P(xr |yICA) (13)

which is the most probable position given the ICA layer activa-
tion.

5

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

3. Learning to Localize a Simulated Robot

3.1. Introduction

This section shows that, using the RC-SFA architecture, the
capability of self-localization of a small simulated mobile robot
emerges in a self-organized way. The SINAR robot model
has 17 short-range noisy distance sensors (see Section 2.4.1).
Based only on the information from these sensors, the RC-SFA
architecture can autonomously learn an internal representation
of the environment which allows for spatial coding and self-
localization.

3.2. Experiments

The experiments are conducted using environment E1
(Fig. 3), a big maze with 64 predefined locations spread evenly
around the environment (represented by small labeled trian-
gles). Additional investigations are also performed with amod-
ified version of the environment containing 11 obstacles which
randomly move around the environment, representing an extra
source of noise which also changes the robot behavior and tra-
jectory in the environment.

The experiments are built as follows. First, for generatingthe
input signal, the simulated robot navigates in the environment
for 180.000 timesteps while its distance sensor measurements
are recorded. It takes approximately 13.000 timesteps for the
robot to visit most of the predefined locations with the SINAR
controller described in Section 2.4.1, which basically makes
the robot explore the whole environment. After downsampling
the recorded input signalu(t), t = 1, ..., 180.000, the number of
samples is reduced tons = 3.600. Next, the downsampled input
signal is used to generate the reservoir statesx(t), t = 1, 2, ..., ns

using (1).
For model optimization, we perform multiple grid search ex-

periments over subsets of the model parameters, using the place
cell reconstruction method from Section 2.5 for position esti-
mation.

3.2.1. Settings
The optimal combination of the model parameters are given

in the following. The reservoir hasNres = 300 neurons. The
SFA and ICA layers consists of 128 units each. The nonlinear-
ity g(u) = u3 is used for the fixed-point ICA algorithm from
Section 2.3.

The input signal is downsampled by a factor ofdt = 50 (using
the matlab functionresample), which reduces the number of
samples given the low speed of the robot. The leak rate in the
reservoir isα = 0.4.

The weight matrixW in is initialized to -0.9, 0.9 and 0 with
probabilities 0.15, 0.15 and 0.7, respectively (which means an
input scaling of 0.9). While the connectivity between unitsis
not that important (Schrauwen et al., 2008), the scaling of the
input connections have a great influence on the reservoir dy-
namics (Verstraeten et al., 2007).

A summary of the configuration parameters is given in Ta-
ble 1, where values in bold denote parameters found by opti-
mization, anddt is the downsampling rate of the input signal.

Figure 3: (a) Environment E1. The environment is tagged with64 labels dis-
played by small triangles.

The training of the RC-SFA architecture is accomplished in
2 steps and uses 5/6 of the input signal as the training dataset
(1/6 for testing). First, the SFA layer is trained by solving (6)
where the inputs are the reservoir states and distance sensors
(like in (7)). After WSFA is found, the output of SFA units
ySFA(t), t = 1, 2, ...,Ns is generated using (7). The second step
corresponds to training the upper ICA layer by applying the
FastICA algorithm from Section 2.3 where the inputs for this
layer are the output of the SFA units. The output signalsySFA(t)
andyICA(t) are upsampled to the original sampling rate ofu(t).

3.2.2. Results
Fig. 4 show the output of 3 SFA units for a test input sig-

nal. The left plot, Fig. 4(a), show the outputs over time whereas
the right plots, Fig. 4(b), show the response of the neurons as
a function of the robot position in the environment. In the left
plot, the horizontal axis represents the time, the left vertical axis
denotes the real robot location (as given by the labeled triangles
in Fig. 3), and the right vertical axis denotes the SFA outputof
the neuron. The colored dots represent the output of the SFA
unit (where red denotes a peak response, green an intermedi-
ate response, and blue a low response). The SFA output is also
shown as a black line in the same plot and as a colored trajec-
tory in the right plot. As SFA units are ordered by slowness,
the first SFA unit has the slowest response. It shows a high
response for locations 40 to 64 and a low response otherwise.
Units 12 and 24 vary much faster, encoding several locationsof
the environment. In Fig. 4(b), each of the units is shown during
two different time intervals, [1, 8400] and [8401, 20000]. In that
way, it is possible to observe that units 12 and 24 encode spatial
information in a way which is dependent on the robot path, that
is, their activation depends on where the robot has come from
in the environment (a characteristic comparable to EC cellsof
rats in Frank et al., 2000).

The upper ICA layer builds on the SFA layer. During learn-
ing, ICA units seek to maximize non-Gaussianity so that their
responses become sparse and clustered, and also as indepen-
dent as possible. This form of sparse coding leads to the unsu-

6

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

20
40
60

R
ea

l L
oc

at
io

n

unit: 1

−2

0

2

S
F

A
 o

ut
pu

t

20
40
60

R
ea

l L
oc

at
io

n

unit: 12

−2

0

2

S
F

A
 o

ut
pu

t

0 10 20 30

20
40
60

R
ea

l L
oc

at
io

n

Timesteps (x 103)

unit: 24

0 10 20 30
−2

0

2

S
F

A
 o

ut
pu

t
(a) SFA output over time

unit: 1

unit: 12

unit: 24

t=1,...,8400

unit: 1

unit: 12

unit: 24

t=8401,...,20000

(b) SFA output as a function of the robot
position

Figure 4: Response of SFA units 1, 12, and 24 for simulations in Environment E1 on test data. (a) the SFA output over time. For each location (in time) given by
the labeled triangles in Fig. 3, there is a colored dot where red denotes a peak response, green an intermediate response,and blue a low response. The output is also
plot as a black line. (b) the same SFA output as a function of the robot position for two distinct time intervals [1, 8400] and [8401, 20000].

(a) ICA output

20

40

60

R
ea

l r
ob

ot
 lo

ca
tio

n
IC

A
 U

ni
ts

Timesteps (x 103)
0 10 20

20

40

60

80

(b) ICA Activation map

Figure 5: Response of ICA units for simulations in Environment E1 on test data. (a) Response of ICA units as a function of the robot position. White dots denote
high activity while darker dots represent lower responses.The results show the localized aspect of place cells or ICA units (the peak response is characteristic of one
specific location). (b) The real robot occupancy grid (top) and the respective spatially-ordered ICA activation map (bottom), where black dots denote peak responses
and white represent lower responses.

Table 1: Parameter configuration

Environment (Robot) Nu Nres NSFA NICA dt α W in

E1 (SINAR) 17 300 128 128 50 0.4 {±0.9, 0}
E2 (E-puck) 8 600 128 128 1 0.1 {±2, 0}

7

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Figure 6: The plot shows the mean activation of ICA units as a function of
the robot heading, which reveals the dependence of trained ICA units on the
direction of movement. Red denotes high response while bluea low response.

pervised formation of place cells. Fig. 5(a) shows a number of
ICA units which code for specific adjacent locations in the envi-
ronment. The peak response is represented by white dots while
lower responses are given gradually in darker colors. As the
robot navigates, a sequence of high activity spots (white dots)
is observable through these set of ICA units, each one coding
for a specific location in the environment.

In order to visualize the localized property of place cells
more clearly, the output of ICA units are ordered such that they
have a spatial relationship. The reference locations (from1 to
64), shown in environment E1 (Fig. 3), are used to automat-
ically order the ICA layer. ICA units which do not respond
strongly enough in any situation are removed from the vector.
Fig. 5(b) shows the real occupancy grid for the robot while it
drives in environment E1 and the respective ICA activation map
showing the spatially-ordered ICA responses (whereu(t) is a
test signal not used during learning). Stronger responses are
represented by darker dots in the figure. This activation mapis
very similar to the real robot occupancy grid showing that the
place cells efficiently learned to cover most of the locations in
the environment.

We have repeated the experiments shown here 15 times with
the same datasets, where each time a different random reser-
voir is created. These distinct experiments have not shown any
significant differences in the quality of the learned place cells.

Most ICA units show an activation which is dependent on
the direction of the robot’s movement. This can be visually
confirmed in Fig. 6, where a blue surface represents a low ac-
tivation and a red surface means high activation. It shows that
the activation of several ICA units (vertical axis in the figure) is,
on average, high only for particular robot directions (horizontal
axis in the figure). This is comprehensible since the environ-
ment is composed of narrow corridors, which shapes the robot
trajectory so that the orientations that the robot may have are
restricted by the environment configuration. So, as the robot
direction is not, in general, a constantly fast-varying feature, it
is also learned by SFA and ICA units.

Using the probabilistic place cell reconstruction method from
Section 2, the predicted robot position during robot navigation

(a) Trajectory prediction in E1

0
200
400
600

x
(d

.u
.)

0

200

400

600

y
(d

.u
.)

0 5 10 15 20 25
0

200

400

600
E

rr
or

 (
d.

u.
)

Timestep (samples) x103

(b) Position prediction in E1

0
200
400
600

x
(d

.u
.)

0

200

400

600

y
(d

.u
.)

0 5 10 15 20 25 30
0

200

400

600

E
rr

or
 (

d.
u.

)

Timestep (samples) x103

(c) Position prediction in E1 with dynamic obstacles

Figure 7: Prediction of the robot position in environment E1given the activa-
tion in the ICA layer using the place cell reconstruction method on test data. (a)
The true robot trajectory as connected black points (left) and the correspond-
ing estimated robot trajectory by the place cell reconstruction method given the
activation in the ICA layer (right). (b) The true and predicted robot coordi-
nates given by black curves and points in cyan color (gray forblack-and-white
prints), respectively. The bottom plot shows the error as the Euclidean distance
between true and predicted position. (c) The true and predicted robot position
in a modified version of environment E1, containing 11 dynamic moving ob-
stacles. Mistakes can be observed when the predicted pointsin cyan (gray for
black-and-white prints) deviate from the black line (also detected by the error
plot).

8

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

is computed given the activation in the ICA layer. The true and
predicted trajectory can be seen in Fig. 7(a) showing that the
RC-SFA architecture is able to learn an internal spatial repre-
sentation of the environment. Some jumps in the predicted po-
sition can be observed, which also occur with the estimated po-
sition computed with signals recorded from hippocampal place
cell of rats (Moser et al., 2008). Fig. 7(b) shows the same true
and predicted positions in terms of the x and y coordinates of
the robot in the world frame along with the respective error,
given by the Euclidean distance between true (black line) and
the predicted (points in cyan color) positions. The mean test
error is 17.2 distance units - see Table 2.

Another experiment with environment E1 is performed, in
which 11 dynamic obstacles were artificially added to the en-
vironment. These obstacles were constantly moving around in
a random way, possibly closing passages and forcing the robot
to follow another way. That yields more stochasticity in the
environment and in the robot behavior. The recorded dataset
consists of 200.000 samples. Training and parameter config-
uration are the same as in the previous experiment. The test
error of 108 d.u., shown in Table 2, is clearly higher than when
the environment is not dynamic. Fig. 7(c) shows the network
predictions as points in cyan and the true position as a black
curve. Despite this higher error rate, the trained system isro-
bust enough to recover from intense environment stochasticity
given by dynamic obstacles and a period of miss-predictions
without the use of odometry, being also able to recover from
robot kidnapping situations as in Antonelo et al. (2008).

4. Learning to Localize a Real Robot

4.1. Introduction

In the previous section, experiments showed that the RC-SFA
architecture can learn spatial representations from a maze-like
simulation environment based on information from 17 sensors.
This section elaborates on experiments with the e-puck robot in
real environments. The robot has only 8 infra-red sensors which
measure distances to environment walls. This setup is more dif-
ficult for two main reasons: stochasticity of the robot controller
and a limited number of sensors. If enough training samples
can be collected, then the architecture can autonomously learn
to encode spatial information.

4.2. Experiments

This section shows results considering a real environment
with 3 rooms and a connecting corridor (see environment E2 in
Fig. 8(a)). The robot navigates in this environment according to
the controller described in Section 2.4.2. So, it can stay navigat-
ing in one room for a random time interval, eventually making
ellipsoid trajectories or leaving the room towards the corridor
(see Fig. 8(b)). The randomness of the robot movement is deter-
mined byρ (see Section 2.4), which is the probability of chang-
ing the movement direction at each second. We have made ex-
periments with different settings -ρ = 0, ρ = 0.02, ρ = 0.03,
and in any case, ICA units would learn to code for locations,
although the more random the movement, the more difficult

(a) Environment E2

(b) Trajectory in environment E2

Figure 8: (a) Environment E2 (120 cm x 90 cm), made of 3 rooms and a con-
necting corridor. The position of the robot is tracked with acamera placed
above the environment for analysis purposes. (b) Trajectory (in gray) generated
by the robot controller in environment E2 for 60.000 timesteps (or 3.3 hours).

the place cell learning. This section shows results considering
the most random behavior, that is,ρ = 0.03, which practically
means that there is a probability of circa 60% for inverting the
direction of movement while the robot is navigating inside one
of the rooms.

For model optimization, grid search experiments are per-
formed over a subset of the model parameters as in the previous
section, using the place cell reconstruction method from Sec-
tion 2.5 for position estimation.

4.2.1. Settings
Navigation in environment E2 resulted inNs = 192.000 sam-

ples of sensor measurements, which means approximately 11
hours of robot navigation. The number of inputs isnu = 8
corresponding to eight distance sensors. Using the place cell
reconstruction method to estimate the robot position from the
ICA layer activation, we found the following optimal parame-
ters: nres = 600 neurons in the reservoir; SFA and ICA layers
with nSFA = nICA = 128 units; reservoir’s leak rateα = 0.1.
The nonlinearityg(u) = u exp(−u2/2) is used for the fixed-point
ICA algorithm from Section 2.3.

Each experiment during the optimization process is executed
10 times, with each run considering a randomly generated reser-
voir.

The input weight matrixW in is initialized to -2, 2 and 0 with
probabilities 0.15, 0.15 and 0.7, respectively (which means an
input scaling of 2). The RC-SFA architecture is trained in steps

9

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Table 2: Results using the place cell reconstruction method

Environment (Robot) Dimensions Type Architecture Test Error

E1 (SINAR) 800x600 d.u. Simulation RC-SFA 17.2 d.u.
E1 with dynamic obstacles (SINAR) 800x600 d.u. Simulation RC-SFA 108 d.u.
E2 (E-puck) 120x90 cm Real RC-SFA 11 cm
E2 (E-puck) 120x90 cm Real SFA 23 cm

as already stated, and uses 9/10 of the input signal (172.800
timesteps) as the training dataset and 1/10 (19.200 timesteps)
is used for testing. After training, the ICA units are ordered by
kurtosis

kurt(y) = E{y4} − 3(E{y2})2 (14)

such that the first unit has the most kurtosis. The above ex-
pression simplifies toE{y4} − 3 once we assumedy is of unit
variance.

4.2.2. Results
This section shows results after training the RC-SFA archi-

tecture. The mean activation of 4 SFA units, rescaled to the
interval [0, 1], as a function of the robot position is shown in
Fig. 9(a). The slowest SFA feature shows a high response in
room 1 which gradually decreases as it gets further to room
3. The third slowest feature has a low response in the middle
room and a high response otherwise. Faster-varying features,
like units 80 and 128, show high responses in multiple loca-
tions of the environment, characterizing low place selectivity in
a way similar to entorhinal cortex cells of rats in Frank et al.
(2000).

The mean activation of ICA units as a function of the robot
position hi(xr) is computed by averaging out the response of
each ICA unit over a discrete grid of evenly spaced robot po-
sitions. Four units’ mean activation are shown in Fig. 9(b).It
is clear that these units learned to code for particular locations
in the environment, i.e., the place fields of the cell, presenting a
peak response at the center of these locations.

The mean activation does not show whether the unit is in-
variant to the robot movement direction. To investigate about
the directionality aspect of ICA units, Fig. 10(a) shows several
plots, where each row corresponds to an ICA unit, and each
column considers robot positions with specific robot headings.
Each plot displays robot positions associated with a heading θ
in cyan color, whereas the robot positions plotted in maroon
color represent a strong activation of the corresponding ICA
unit. For example, unit 5, in the first row, is strongly activated
at the right part of the corridor when the robot is heading right
(θ = 0± κ). The last column of this figure shows the mean ac-
tivation as a function of the robot heading, clearly showingthe
direction dependence of these ICA units. Fig. 10(b) is another
plot which indicates the directionality dependence of ICA units,
by showing the mean activations of each ICA unit as a function
of the robot heading, where the most representative (with most
kurtosis) ICA units are direction-dependent.

By using the probabilistic method described in Section 2.5,
we can evaluate the capability of trained ICA units in terms of
robot localization performance. Fig. 11 shows the estimated
robot position using equation (13) as well as the true robot
position for 3.000 timesteps. The test error, given by the Eu-
clidean distance betweenxr andx̂r was 0.1188 for these 3.000
timesteps. It can be seen in the figure that the estimated posi-
tion matches very well with the true robot position, confirming
the good localization capability which emerged from the unsu-
pervised learning of the RC-SFA architecture. Furthermore, we
can see erratic jumps of the estimated robot position in thisfig-
ure, which is actually also observed in the estimated position
from the activity recorded from hippocampal place cells of rats
(Zhang et al., 1998).

4.2.3. Robustness to Noise
We also tested the robustness of the proposed architecture to

different levels of Gaussian noise on sensor measurements. In
Fig. 12, the mean and standard deviation of the test error, given
by the Euclidean distance between true and predicted positions,
are displayed for noise levels ranging from 1% to 50%. The er-
ror stays very low even with 10% (up to 15%) noise on sensors.
From 20% on, sensors become too noisy and do not convey
useful information, which causes the error to be maximum.

4.2.4. The Role of the Reservoir Recurrent Architecture
The dynamics of the reservoir is best fine-tuned by grid

searching two parameters: the input scaling ofW in and the
spectral radius|λmax| (Verstraeten and Schrauwen, 2009) (see
Section 2.1). Fig. 13 shows that the nonlinear reservoir per-
forms better for|λmax| <= 1, on average. The reservoir’s dy-
namic nonlinear regime is further tuned by choosing an opti-
mal input scaling. Higher values of the input scaling yield an
improve in performance, as shown in the figure. The optimal
combination is an input scaling of 2.5 and|λmax| = 0.9.

Leaky integrator neurons can also enhance performance if
the input timescale does not optimally match the reservoir
timescale. The leak rateα in (1) controls how fast (or slow)
reservoir units respond to input stimuli. In Fig. 14, it is possi-
ble to see that there is an optimum for the leak rate, when it is
approximately 0.07. It also shows that the short-term memory
in the reservoir is an important characteristic for the learning of
the SFA and ICA layers and, therefore, for the performance of
the localization capability of the robot.

In order to confirm the importance of the reservoir in our
RC-SFA architecture, experiments are performed with an archi-

10

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

1 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

x
y

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1 xy

80 128

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1 xy

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

x
y

(a) 4 SFA units

2 5

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

y
x

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1 y

x

8 60

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1 x

y

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1 xy

(b) 4 ICA units

Figure 9: Activation of SFA and ICA units in environment E2. Red denotes a high response whereas blue denotes a low response. (a) Mean activation of SFA units
as a function of the robot position in the environment, rescaled to the interval [0,1]. (b) Mean activation of place cells(ICA units) as a function of the robot position
in the environment.

→ ↑ ← ↓ Mean Activation vs
θ = 0± κ θ = π2 ± κ θ = π ± κ θ = 3π

2 ± κ Robot heading

(a) Response of ICA units as a function of the robot heading

(b) Mean activation of ICA units as a function
of the robot heading

Figure 10: Results after training with the e-puck robot in environment E2. (a) Directionality dependence of place cell activation for test data. Each row represents
a place cell, where points in cyan (lighter) color denote thepositions occupied by the robot for given directionsθ in the environment and points in maroon (darker)
color represent the positions where the place cell responses are higher than a certain fixed threshold. The last column shows the mean activation of a place cell as
a function of the robot heading. (b) Mean activation of placecells as a function of the robot heading. The plot shows that the activation of most place cells are
dependent on the robot heading. The results are shown for test data. Red denotes a high response whereas blue denotes a lowresponse.

11

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

0

0.5

1

X
 (

m
)

0

0.5

1

Y
 (

m
)

0 500 1000 1500 2000 2500 3000
0

0.5

1

E
rr

or
 (

m
)

Timestep (samples)

(a) RC-SFA+ ICA

0

0.5

1

X
 (

m
)

0

0.5

1

Y
 (

m
)

0 500 1000 1500 2000 2500 3000
0

0.5

1

E
rr

or
 (

m
)

Timestep (samples)

(b) SFA+ ICA (using a time window and non-linear expansion)

Figure 11: Predicted robot position in environment E2 on test data using the Bayesian place cell reconstruction method for 3.000 timesteps of navigation. (a)
Results using the RC-SFA architecture. The true and predicted robot coordinates are given by black curves and points in cyan color (gray for black-and-white
prints), respectively. The bottom plot shows the error as the Euclidean distance between true and predicted position. (b) Results using an architecture without the
reservoir, but with a time window and non-linear expansion on the input signal for the SFA layer.

1 5 10 15 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise level (%)

E
rr

or
 (

di
st

an
ce

, m
)

Figure 12: Robustness to Gaussian noise. The plot shows the mean and the
standard deviation of the localization error on test data from environment E2
considering different noise levels on all 8 robot distance sensors. Trainingdata
uses only 0.5% noise on sensors in all experiments. Each experiment is run for
10 times (the plot shows the mean and the standard deviation).

tecture which replaces the reservoir by a non-linear expansion
on a time-delayed downsampled input signal. The non-linear
function expands the input signal in the space of polynomials
of degree 2. We optimized the model by grid searching the fol-
lowing parameters: downsampling ratedt and size of the time
windowtw. The best performance in terms of the Euclidean dis-
tance between true and predicted robot position, which is 0.21,
is attained fordt = 32 andtw = 2.

So, this architecture uses a reduced and smoothed input sig-
nal by a downsampling process which convertsNs = 192.000
samples intoNs = 6000 samples. It also uses a time window of
size 2 which effectively producesni = 16 inputs after the non-
linear expansion step. Table 2 shows that this model has a test
error which is almost double of the error using the RC-SFA ar-
chitecture. In Fig. 11(b), the predicted robot position using this
model and its associated error are shown. Although it learned
to code for some locations in the environment, the precisionis

Spectral radius

In
pu

t s
ca

lin
g

Test Error

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5

0.9

1.3

1.7

2.1

2.5

2.9

3.3

3.7
0.15

0.2

0.25

0.3

0.35

0.4

Figure 13: Input scaling vs. Spectral radius. The plot showsthe mean and
the standard deviation of the test localization error in environment E2 for dif-
ferent combinations of input scaling inWin and the reservoir’s spectral radius
|λmax |. Each experiment is executed 5 times with randomly generated reservoir
weights. Input scaling of 2.5 and|λmax | = 0.9 yields the minimum test error
(black surface represents low error while white surface corresponds to higher
error).

not as good as with the RC-SFA model in Fig. 11(a). Interme-
diate locations are not coded at all: note that the predictedX
coordinate often presents big jumps.

5. Discussion

This work has proposed a biologically-inspired hierarchical
architecture with three layers for learning sensor-based spa-
tial representations of a robot environment in an unsupervised
way. The proposed model does not use any idiothetic signals
for path integration (or odometry) as most models do (Burgess
et al., 2007; Hasselmo, 2008; Arleo et al., 2004; Stroesslinet al.,
2005; Milford, 2008), and is the first to rely solely on a limited
number of raw distance sensors for unsupervised learning of
place cells.

12

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

−1.5 −1 −0.5 0
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Leak rate (log
10

(α))

E
rr

or
 (

di
st

an
ce

, m
)

Figure 14: Influence of the reservoir’s leak rate on performance. The plot shows
the mean localization error (and its standard deviation) ontest data from envi-
ronment E2 considering different leak ratesα of the reservoir. Each experiment
is executed 10 times with randomly generated reservoir weights. α = 0.07
yields the lowest test error.

The first layer of the architecture is a reservoir of recurrent
nodes, which is used as a form of temporal kernel for project-
ing low-dimensional inputs (e.g., a small number of distance
sensors) to a dynamic high-dimensional space. It integrates
the noisy distance sensory input for making it possible to in-
fer the robot position from the history-dependent trajectory of
the dynamic reservoir. The second layer learns in an unsuper-
vised way to derive slowly-varying features from the reservoir
states and also possibly from the input layer, using the Slow
Feature Analysis (SFA) algorithm. These slow features indicate
latent signals present in the input signal which vary in a slower
timescale, such as the position or the orientation of a robotin its
environment. If the position can be inferred from given inputs
(e.g., the reservoir state), SFA can extract it based on the slow-
ness concept. The top layer produces independent components
which are a linear combination of the SFA features, using Inde-
pendent Component Analysis (ICA). It learns a sparse coding
on the SFA outputs, resulting in units which are activated only
for a specific position in the robot environment.

Using a probabilistic place cell reconstruction method
(Zhang et al., 1998), the robot position (coordinates in the
world’s frame) is estimated from the activation in the ICA layer.
This estimated position has shown that the ICA layer in the RC-
SFA architecture has an activation correlated to the robot posi-
tion, confirming the powerful capability for sensor-based unsu-
pervised learning of spatial representations. These results are
obtained in simulated environments considering a robot model
with 17 distance sensors, as well as in real environments using
the e-puck robot with 8 infra-red distance sensors.

The SFA layer in the proposed model has shown low place
selectivity, with similarities to entorhinal cortex (EC) cells of
rats in W tracks (Frank et al., 2000), whereas the ICA layer
has presented high place selectivity and an activation which is
dependent on the robot path, similarly to hippocampal cellsof
rats in Frank et al. (2000).

The directionality aspect of place cells in the ICA layer is
in accordance with other works in the literature which show
that environment shape and robot behavior affect the direction-

ality component of place cells (Frank et al., 2000; Eichenbaum
et al., 1999; Brunel and Trullier, 1998). Most of these com-
putational models implement path integration using idiothetic
input, despite the current lack of knowledge with respect tothe
mechanisms of path integration in the brain like the integration
of self-motion signals with allothetic input (Eichenbaum et al.,
1999). On the other hand, in the proposed RC-SFA architec-
ture, the reservoir integrates the allothetic input (distance sen-
sors), forming a trajectory in state space which SFA units use
to learn spatial features from a given environment. This com-
putation can be compared with optical flow, in the sense that
the reservoir provides a temporal memory of the stimuli stream
which can be used for distance estimation, that is, the reservoir
is involved in maintaining an estimate of the robot locationfor
a temporary time period in the absence of the distance sensory
input.

Learning in SFA is comparable to Principal Component
Analysis (PCA) in terms of complexity. Furthermore, while bi-
ologically plausible implementations of SFA exist (Hashimoto,
2003), there is experimental evidence showing that the slow-
ness learning principle of SFA is present in the visual cortex
(Li and DiCarlo, 2008).

Although the current ICA implementation may seem biologi-
cally unrealistic, a more biologically plausible learningscheme
for generating place cells at the top ICA layer from the non-
localized representation of SFA units can be implemented by
competitive learning (Franzius et al., 2007b) or non-linear Heb-
bian learning (Hyvärinen and Oja, 1998).

5.1. Related works

It has been shown in Franzius et al. (2007a) that a hierarchy
of SFA layers with increasing receptive fields at upper layers
and a top ICA layer can be trained to code for either the rat’s
position or the rat’s head direction depending on the movement
pattern of a simulated rat. Their model is based on the high-
dimensional input from a camera which simulates the 320o field
of view of the rat. Simple environments such as linear tracks
or rectangular arenas with distinct textures set for each wall
make it possible to infer the rat’s position from a single im-
age. The similarities between their model and the one proposed
in this paper refer to the layers which learn by SFA and ICA.
The main differences are that we use a dynamic reservoir at the
first layer, which projects a low-dimensional input into a high-
dimensional non-linear space and which proved to be essential
for learning spatial representations with such a small number
of distance sensors. Moreover, our model copes with sensor
aliasing, where multiple environmental states map to the same
perceptual sensory input.

This means that it is not sufficient to consider only the current
time step to determine the robot location, but the history ofthe
input stream - a property which the reservoir naturally has.

In Wyss et al. (2006), a cortical hierarchy of layers is pro-
posed which learn by optimizing an objective function that
takes into account temporal stability and temporal decorrela-
tion between units. All units are leaky integrators providing
them with a local memory trace.

13

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Their method is similar to Slow Feature Analysis in the sense
that it maximizes temporal stability or slowness of the output
signal. However, their learning method is iterative and, asso,
prone to convergence to local optimum (unlike SFA). Their ex-
periments are made with a mobile robot driving randomly in a
rectangular environment with predefined cues. The continuous
stream of a 16x16 pixels image feeds the architecture which,
after learning, shows properties of hippocampal place cells.

The SFA algorithm has also been used as the training method
of a linear readout output layer of reservoirs of spiking neu-
rons in Klampfl and Maass (2009). They show that these linear
readouts can learn to discriminate isolated spoken digits in an
unsupervised way.

Other models of hippocampal place cells and biologically-
inspired navigation exist in the literature. In Arleo et al.(2004),
unsupervised growing networks are used to build an architec-
ture with idiothetic and allothetic components that are com-
bined in a hippocampal place cell layer to support spatial navi-
gation (validated using a Khepera mobile robot with 2D vision
sensors). Their model explicitly uses dead-reckoning to track
the robot position and associates place cell firing with the esti-
mated position.

In Milford (2008), a hippocampal place cell model is de-
signed to solve the SLAM problem. They choose a pragmatic
approach, favoring functionality over biologically plausibility.
Their model, called RatSLAM, have a 3D structure for pose
cells (representing beliefs for the robot position and orientation)
which learn associative connections with view cells (allothetic
representation). They validate their model with several mobile
robots, equipped with a camera, in indoor and outdoor envi-
ronments. For a further review on biologically-inspired local-
ization models, see Filliat and Meyer (2003) and Trullier etal.
(1997).

5.2. Future Work

Future research could be done on generative models which
predict the robot perceptual input given the activation of the
ICA layer. This can be implemented in a supervised fashion
using a reservoir with the location as inputs (ICA units) andthe
sensory input as desired output (see Antonelo et al., 2007, for
an example). Although the training of this generative model
is supervised, the whole learning process is still unsupervised,
because no labels for the locations are needed. By predicting
the sensory input, the localization in the ICA layer may be im-
proved in situations where sensors are broken or faulty (An-
tonelo et al., 2007). In the context of robot navigation and lo-
calization, future work include the integration of the allothetic
representation of the RC-SFA architecture with the robot posi-
tion estimated by a path integration module (odometry). With
this setup, the new architecture could be compared to a basic
form of biologically-inspired SLAM (as in Milford, 2008).

In principle, the proposed RC-SFA architecture would scale
to larger environments, but likely not to very random robot be-
haviors. On the other hand, a hierarchical SFA architecture
could be used for scaling to larger environments and richer sen-
sory data (e.g., a camera) (Franzius et al., 2007a).

Acknowledgment

The authors would like to thank the anonymous referees for
their contributions to the improvement of this article and to
Michiel D’Haene for helping on issues with the e-puck robot.
This research is partially funded by the EC FP7 project OR-
GANIC (FP7-231267). Eric Antonelo is sponsored by the Spe-
cial Research Fund of Universiteit Gent (BOF).

References

Antonelo, E. A., Baerlvedt, A.-J., Rognvaldsson, T., Figueiredo, M., 2006.
Modular neural network and classical reinforcement learning for au-
tonomous robot navigation: Inhibiting undesirable behaviors. In: Proceed-
ings of the International Joint Conference on Neural Networks (IJCNN).
Vancouver, Canada, pp. 498– 505.

Antonelo, E. A., Schrauwen, B., 2009. Towards autonomous self-localization
of small mobile robots using reservoir computing and slow feature analysis.
In: Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC). pp. 3818–3823.

Antonelo, E. A., Schrauwen, B., Campenhout, J. V., 2007. Generative modeling
of autonomous robots and their environments using reservoir computing.
Neural Processing Letters 26 (3), 233–249.

Antonelo, E. A., Schrauwen, B., Stroobandt, D., 2008. Eventdetection and
localization for small mobile robots using reservoir computing. Neural Net-
works 21, 862–871.

Antonelo, E. A., Schrauwen, B., Stroobandt, D., 2009. Unsupervised learning
in reservoir computing: Modeling hippocampal place cells for small mobile
robots. In: ICANN ’09: Proceedings of the 19th International Conference on
Artificial Neural Networks. Vol. 5768. Springer-Verlag, Berlin, Heidelberg,
pp. 747–756.

Arleo, A., Smeraldi, F., Gerstner, W., May 2004. Cognitive navigation based
on nonuniform gabor space sampling, unsupervised growing networks, and
reinforcement learning. IEEE Transactions on Neural Networks 15 (3), 639–
652.

Berkes, P., Wiskott, L., 2005. Slow feature analysis yieldsa rich repertoire of
complex cell properties. Journal of Vision 5, 579–602.

Brunel, N., Trullier, O., 1998. Plasticity of directional place fields in a model
of rodent ca3. Hippocampus 8, 651–665.

Buonomano, D., Maass, W., 2009. State-dependent computations: Spatiotem-
poral processing in cortical networks. Nature Reviews Neuroscience 10 (2),
113–125.

Burgess, N., Barry, C., O’Keefe, J., 2007. An oscillatory interference model of
grid cell firing. Hippocampus 17 (9), 801–812.

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., H, H. T., 1999. The
hippocampus, memory, review and place cells: Is it spatial memory or a
memory space? Neuron 23, 209–226.

Filliat, D., Meyer, J.-A., 2003. Map-based navigation in mobile robots:: I. a
review of localization strategies. Cognitive Systems Research 4 (4), 243 –
282.

Frank, L. M., Brown, E. N., Wilson, M., 2000. Trajectory encoding in the hip-
pocampus and entorhinal cortex. Neuron 27 (1), 169 – 178.

Franzius, M., Sprekeler, H., Wiskott, L., August 2007a. Slowness and sparse-
ness lead to place, head-direction, and spatial-view cells. PLoS Computa-
tional Biology 3 (8), 1605–1622.

Franzius, M., Vollgraf, R., Wiskott, L., 2007b. From grids to places. Journal of
Computational Neuroscience 22, 297–299, 10.1007/s10827-006-0013-7.

Hashimoto, W., 2003. Quadratic forms in natural images. Network: Comput.
Neural Syst. 14, 765–788.

Hasselmo, M. E., 2008. Grid cell mechanisms and function: Contributions
of entorhinal persistent spiking and phase resetting. Hippocampus 18 (12),
1213–1229.

Hyvärinen, A., Oja, E., 1998. Independent component analysis by general non-
linear hebbian-like learning rules. Signal Processing 64 (3), 301 – 313.

Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and
applications. Neural Networks 13, 411–430.

Jaeger, H., 2001. The “echo state” approach to analysing andtraining recurrent
neural networks. Tech. Rep. GMD Report 148, German NationalResearch
Center for Information Technology.

14

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Jaeger, H., Haas, H., April 2 2004. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication. Science 308, 78–
80.

Jaeger, H., Lukosevicius, M., Popovici, D., 2007. Optimization and applica-
tions of echo state networks with leaky integrator neurons.Neural Networks
20, 335–352.

Kaltenbrunner, M., Bencina, R., 2007. reacTIVision: a computer-vision frame-
work for table-based tangible interaction. In: TEI ’07: Proceedings of the
1st international conference on Tangible and embedded interaction. ACM,
New York, NY, USA, pp. 69–74.

Klampfl, S., Maass, W., 2009. Replacing supervised classification learning by
slow feature analysis in spiking neural networks. In: Proc.of NIPS 2009,
Advances in Neural Information Processing Systems. Vol. 22. MIT Press,
pp. 988–996.

Li, N., DiCarlo, J. J., 2008. Unsupervised natural experience rapidly alters in-
variant object representation in visual cortex. Science 321 (5895), 1502–
1507.

Maass, W., Natschläger, T., Markram, H., 2002. Real-time computing without
stable states: A new framework for neural computation basedon perturba-
tions. Neural Computation 14 (11), 2531–2560.

Milford, M., 2008. Robot Navigation from Nature. Springer Tracts in Advanced
Robotics.

Mondada, F., September 2007. E-puck education robot. Http://www.e-
puck.org/.

Moser, E. I., Kropff, E., Moser, M.-B., 2008. Place cells, grid cells and the
brain’s spatial representation systems. Annual Reviews ofNeuroscience 31,
69–89.

O’Keefe, J., 1976. Place units in the hippocampus of the freely moving rat.
Experimental Neurology 51 (1), 78 – 109.

O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Prelim-
inary evidence from unit activity in the freely-moving rat.Brain Research
34, 171–175.

Schrauwen, B., Busing, L., Legenstein, R., 2008. On Computational Power and
the Order-Chaos Phase Transition in Reservoir Computing. In: Proceedings
of NIPS.

Siegwart, R., Nourbakhsh, I. R., 2004. Introduction to Autonomous Mobile
Robots. Bradford Book.

Solomon, J. H., Hartmann, M. J., 2006. Sensing features withrobotic whiskers.
Nature 443, 525.

Stroesslin, T., Sheynikhovich, D., Chavarriaga, R., Gerstner, W., 2005. Robust
self-localisation and navigation based on hippocampal place cells. Neural
Networks 18 (9), 1125–1140.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics. The MIT Press.
Trullier, O., Wiener, S. I., Berthoz, A., Meyer, J.-A., April 1997. Biologically-

based artificial navigation systems: Review and prospects.Progress in Neu-
robiology 51 (5), 483–544.

Verstraeten, D., Schrauwen, B., 2009. On the quantificationof dynamics in
reservoir computing. In: ICANN ’09: Proceedings of the 19thInternational
Conference on Artificial Neural Networks. Vol. 5768. Springer-Verlag, pp.
985–994.

Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D., 2007. A unifying
comparison of reservoir computing methods. Neural Networks 20, 391–403.

Wiskott, L., Sejnowski, T. J., 2002. Slow feature analysis:Unsupervised learn-
ing of invariances. Neural Computation 14 (4), 715–770.

Wyffels, F., Schrauwen, B., Verstraeten, D., Stroobandt, D., 2008. Band-pass
reservoir computing. In: Proceedings of the InternationalJoint Conference
on Neural Networks (IJCNN). pp. 3204–3209.

Wyss, R., Knig, P., Verschure, P. F. M. J., 2006. A model of theventral visual
system based on temporal stability and local memory. PLoS Biol 4 (5), e120.

Yamazaki, T., Tanaka, S., 2007. The cerebellum as a liquid state machine. Neu-
ral Networks 20, 290–297.

Zhang, K., Ginzburg, I., McNaughton, B. L., Sejnowski, T. J., Feb 1998. Inter-
preting neuronal population activity by reconstruction: unified framework
with application to hippocampal place cells. J Neurophysiol 79 (2), 1017–
1044.

15

