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Abstract

This work proposes a hierarchical biologically-inspiredhitecture for learning sensor-based spatial represensaof a robot
environment in an unsupervised way. The first layer is cosegriof a fixed randomly generated recurrent neural netwhek, t
reservoir, which projects the input into a high-dimenslpdgnamic space. The second layer learns instantaneoukyslarying
signals from the reservoir states using Slow Feature Ais($&A), whereas the third layer learns a sparse codingeo8EA layer
using Independent Component Analysis (ICA). While the S&gel generates non-localized activations in space, theld@ér
presents high place selectivity, forming a localized spaittivation, characteristic of place cells found in thegacampus area of
the rodent’s brain. We show that, using a limited number @$yshort-range distance sensors as input, the propostshsiearns
a spatial representation of the environment which can be tasgredict the actual location of simulated and real robmithout the
use of odometry. The results confirm that the reservoir l/essential for learning spatial representations fromddawensional
input such as distance sensors. The main reason is thatdbe/o@ state reflects the recent history of the input stre@trus,
this fading memory is essential for detecting locationsinfigavhen locations are ambiguous and characterized bylairsénsor
readings.

Keywords:
Reservoir Computing, Slow Feature Analysis, Independem@nent Analysis, Place cells, Robot localization

1. Introduction 2007). Such theoretical models includecho State Networks
(Jaeger and Haas, 2004) for analog neuronslaqdid State

Traditional neural network models were designed to proces¥achines (Maass et al., 2002) for spiking neurons. From a
static spatial input patterns, and are not inherently ablen- ~ Machine learning perspective, a reservoir network, uguaii-
dle time-varying stimuli or dynamic patterns. To cope with domly generated and sparsely connected, functions as atemp
temporal problems, these networks model time as an adlition"@ kernel, projecting the input to a dynamic non-linearcspa
spatial dimension by dividing time into bins such that, far e DPuring simulation, the reservoir states form a trajectohjol
ample, a 5-bin time window yields an input layer size bf B\, |s_depeno!ent on the current externgl sensory input, bl_JthNhlc
is the number of input signals). In this way, time is treateda  Still contains memory traces of previous stimuli. Compiotat
additional spatial dimension at the level of the inputs,ahis N the outputlayer occurs by linearly reading out instaatars
not a biologically plausible approach (Buonomano and Maass_states of the reservoir. _In this way, reservoir architextigan
2009). In a second approach for representing time, neutal ne"heérently process spatiotemporal patterns.
works models with recurrent connections allowed for coraput ~ Most reservoir computing models use supervised learning
tion based on the previous state of the network and the durreschemes to train the readout output layer. In this casearine
sensory input, providing a mechanism of temporal conteatt th regression is the standard technique used for output igini
still considered time as a discrete dimension (Buonomano an(Jaeger and Haas, 2004). However, biological systems proba
Maass, 2009). bly learn a great number of tasks in an unsupervised way. Slow

The current work is based on the Reservoir Computing (RCieature Analysis (SFA) (Wiskott and Sejnowski, 2002) is an
paradigm (Verstraeten et al., 2007), where a non-lineaaoiyn unsupervised learning method based on the concept of slow-
ical system (e.g. a recurrent neural network) is used to imap t Ness. It extracts invariant or slowly-varying represeate of
inputs to a high-dimensional space, in which classificaion @ high-dimensionalinput signal, and has been shown to lee abl
linear regression is easily accomplished. Therefore, ties to model properties of complex cells from the primary visual
of this dynamic reservoir are linearly combined in an outputcortex V1 (Berkes and Wiskott, 2005).
layer, which is the sole trained part of the architectureisTh  In this work, we propose a hierarchical architecture, where
type of state-dependent computation has been proposed-as athe first layer comprises a sparsely connected reservaioniket
ologically plausible model for cortical processing (Buammo  with internal dynamics, and the second layer consists of SFA
and Maass, 2009; Maass et al., 2002; Yamazaki and Tanakanits. The short-term memory of the reservoir and its naedr
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projection in conjunction with such an unsupervised leggni not dependent on the animal’s direction of movement, thexe a
technique yields a model which possesses advantages fithm bdew experiments showing that place cells exhibit movement-
theoretical models: the inherent spatiotemporal prongssa-  related firing patterns such that the environment configumat
pabilities of the reservoir as well as the slowly-varyingl-hi and the animal’s behavior can impose a directional stredtur
den signal extraction of the SFA model. This architecture ighe firing of place cells (Eichenbaum et al., 1999). In Brunel
called RC-SFA model, firstintroduced in Antonelo et al. (2P0 and Trullier (1998), it is proposed that place cells areiriatr
and Antonelo and Schrauwen (2009). This paper considerabbkically directional and that invariance to direction is iaviled
extends previous works by making an elaborate investigatiothrough generalization. In Frank et al. (2000), using a con-
of the RC-SFA model, a range of insightful experiments (alscstrained environment for rats such as W tracks, it is showah th
showing the importance of the reservoir), and a compretiensi hippocampal CA1 cells and entorhinal cortex (EC) cells code
analysis of the localization capability mainly with respéa  for spatial information on a way dependent to the rat’s path o
real-world robot experiments. behavior. It assumes that, if the hippocampus and EC are re-
The slowness extraction mechanism present in SFA allowkated to path planning over extended trajectories, these-st
that high-level concepts, such as the position or oriestadif  tures should reflect where the animal intends to go or where it
a subject inside a room, which are slowly varying in time, behas come from. Similarly, the proposed RC-SFA architedture
generated from low-level fast-varying stimuli like visioim the  this work encodes positional information on a path-depahde
same way, the location of a mobile robot inside an envirortmenway, where the SFA layer and ICA layer exhibit an activation
can be predicted from vision, but also from distance senfmrs pattern comparable to that of EC cells and hippocampal CA1
instance. Supervised learning approaches using RC fott robeells found in Frank et al. (2000), respectively.
localization based only on distance sensors have alreagly be The current work is inspired by the fact that whiskers of ro-
developed in Antonelo et al. (2008, 2007). This work goes bedents can provide relevant information about the enviraitme
yond that by using SFA for learning slowly-varying spatigh+  and shape of objects (Solomon and Hartmann, 2006). In the
resentations in an unsupervised way from a high-dimenkionaame way, the experiments in this paper are based on a small
reservoir space, which is excited by the robot’s distance se mobile robot which perceives the environment through a lim-
sors. ited number of short-range distance sensors. We assume that
In our architecture, SFA units show an activation which isthis low-dimensional input, such as whiskers for rats otegise
spatially non-localized in the considered environmerdt th,  sensors for robots, can provide interesting informatiomfthe
after training, their activation is high for multiple andesgjific ~ environment.
locations of an environment, showing low place selectiviy In mobile robotics, the problem of robot localization is usu
second step is necessary for producing units which are onlglly referred as the SLAM problem, which stands for Simulta-
active for particular locations. In Franzius et al. (200@a) neous Localization And Mapping. In our architecture, theato
additional post-processing step using Independent Coergon localization capability emerges in a self-organized wayhat
Analysis (ICA) is applied for learning sparse represeanteti upper ICA output layer. Distinct ICA outputs code foffdrent
from SFA units. Similarly, in this work, ICAis used in thetti  locations in the robot’s environment after learning. Istlo-
layer for generating localized representations of a robet-e calization capability comparable to standard robot |@edion
ronment. The complete architecture is shown in Fig. 1. frameworks such as Markov localization (Thrun et al., 208)5)
Experiments accomplished with freely moving rats in circu-Kalman filtering techniques (Siegwart and Nourbakhsh, 2004
lar or rectangular open fields show the existence of two typel is comparable to some extent, with advantages and disad-
of spatial encoding cells in the brain of rodents: hippocaimp vantages of each approach. Probabilistic approaches ti rob
place cells and grid cells from the entorhinal cortex. Plz@lks  localization, usually based on expensive laser-rangenscan
form an implicit spatial representation of an animal’'s eomi  have to take into account the following points: the modeling
ment, firing whenever the rodent is located at a particular loof the noise of each sensor, the kinematic model of the robot,
cation (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Moserthe costly drawing of a priori map of the environment or a
et al., 2008), which defines the place field of the cell. Anothe mechanism for map building during navigation, matching-sen
type of spatial activation is found in grid cells of the etioal ~ sory data to the stored map representation for the correofio
cortex. The activation of these cells have shown to followid g position estimation, and so on. In contrast to this, modéls o
pattern in circular open fields and probably have an impértanbiologically-inspired localization and navigation systg such
role in the formation of place cells (Moser et al., 2008). as artificial neural networks-based models, tend to oveecom
Itis assumed that two classes of input are available forapat these limitations and costly processes by learning intpiep-
encoding cells: idiothetic and allothetic. While alloticehputs  resentations of the environment from sensor data.
are originated from the external environment (vision, itact In traditional localization algorithms, the represertatof
and auditory signals), idiothetic input could be formed bif-s  the stored map can be grid-based, topological, or hybrigg{S
motion (proprioceptive) signals. The origin of these ilitic ~ wart and Nourbakhsh, 2004). Grid-based methods produce
signals and the mechanisms for the integration of thesasign metric maps and have high resolution, while topological snap
with allothetic input have not yet been determined (Mosat.et are more abstract and describe the environment as a graph of
2008). connected nodes. The advantages of probabilistic modeis ar
Although the majority of the existing place cell models areeasy human interpretation of the robot position in the store
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map; accurate descriptions of the map for grid-based meth- In this work, the dynamics of the reservoir is tuned by empir-
ods (Siegwart and Nourbakhsh, 2004); afiiiceent planning ically choosing the input scaling faW, as well as the spectral
in topological maps (Thrun et al., 2005). Given some as+adius of W s Which is fixed atiinax = 0.99 for all experi-
sumptions, state-of-the-art algorithms, such as the EA%S  ments. Further optimization on these parameters are shown i
method (Thrun et al., 2005), are able to solve the SLAM probSection 4.2.4, which also indicates that the chosen enapiric
lem. Although this work does not aim to solve the SLAM prob- values are close to the optimum.
lem, it is an interesting biologically-inspired model whican Usually, the connection matriced/j, and W,es are cre-
autonomously learn locations in an environment from a Bhit  ated considering sparse connectivity, but that is not mianga
number of inexpensive infra-red distance sensors. Furtber,  (Schrauwen et al., 2008).
the proposed model does notdepend on the use of odometry, butThere are two ways to increase the memory of a reservoir
it is based on the powerful temporal processing of the reserv without output feedback. It is possible to either tune trakle
as a form of short-term memory of previous inputs. ratea € (0, 1] of the reservoir (Jaeger et al., 2007) for match-
This paper is organized as follows. Section 2 describeing the timescale of the input signal or downsample the in-
the methods used in this work, namely, Reservoir Computingput signal. Low leak rates yield reservoirs with more mem-
Slow Feature Analysis and Independent Component Analysigry which canremember the previous stimuli for longer time
as well as the robot models and the place cell reconstructiospans. On the other hand, leak rates close to 1 are suitable fo
method used in the experiments. Sections 3 and 4 descriliggh-frequency input signals which vary in a faster timésca
the experiments performed with simulated and real robets, r Sometimes a combination of reservoir units possessinondist
spectively, using the RC-SFA architecture. Finally, Seth  leak rates can improve performance (Antonelo et al., 2G08),
presents the conclusions, related works and future dinegti example, when the input signal consists of components tpera
for research. ing in distinct timescales. Other approaches include tieeofis
band-pass filters in reservoir units (Eis et al., 2008) which
allow for very specific frequency sensitivity. The configiima
of several parameters are given in subsequent sections.
The readout output layer in reservoir systems is usually
trained with linear regression methods such as the Least

The Reservoir Computing (RC) model for analog neuronsSquares method or Ridge Regression, which are supervised

the Echo State Network (Jaeger, 2001), is modeled by the fomethods. The training uses a matrix whose rows are made of
lowing state update equation: the reservoir’s states generated during the stimulatianah-

put signal in the reservoir. In this work, the output layer is
X(t+ 1) = (1 - a)x(t) + af (Wihu(t) + Wresk(1))), (1) replaced by a SFA layer which learns in an unsupervised way.
) ) This method is described in the following section.
where:u(t) denotes the input at tintex(t) represents the reser- Next, consideN, as the number of input8liesas the number

voir stateja is the I(_aak rate (Jaeggr etal, 2007_)3 _ ~ of neurons in the reservoispa as the number of SFA units;
andf() = tanh() is the hyperbolic tangent activation function andNca as the number of ICA units.

(the most common type of activation function used for reser-

VOIrs). .
Connections between units in the reservoir are representgdz' Sow Feature Analyss

by the weight matriXV s, while the inputs’ connectionstothe ~ Most sensory input signals vary in a fast timescale, even
reservoir are given byVi,. The initial state of the dynamical though the environment properties may be slowly varyings Th
system isx(0) = 0. The above equation considers that reseris pecause sensors provide low-level representations\of en
voir units are leaky integrators (Jaeger et al., 2007). Addad  ronment features and are prone to fast signal variatiogs, &.
reservoir equation is found when= 1. human moving inside anfiice produces fast visual input varia-
The input weight matriXVi, as well as the reservoir weight tion while higher position in the building changes slowly. Slow
matrix W es are not trained during the simulations but, instead,Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) islan a
they are generated from a random distribution, such as a-Gaugorithm which finds output functiong;(x(t)) which maximize
sian distribution or a discrete set. The dynamic regime ef th temporal slowness, given a high-dimensional input signi&
reservoir has traditionally been tuned by scaling the cotime |t extracts functions which provide a higher level repraaen
matrix Wres such that its spectral radilinx] < 1, wherédmaxl  tion of the environment, assuming that they vary in a slower
is the largest absolute eigenvalueWfes (Jaeger, 2001). Al- timescale when compared to the raw input. The SFA output is
though it does not guarantee the Echo State Property (e.g. & instantaneous function of the input so that it dependg onl
reservoir with fading memory), in practice this criteriumop  on the current state, fierently from a filter which depends on
duces good reservoirs. Besides the reservoir weight métex previous inputs.
dynamics of the reservoir is determined by several factiies: In mathematical terms (Wiskott and Sejnowski, 2002), the

input scaling ofWi,, an optional bias, the nonlinearity of the SFA model tries to find output signajs= g;(x(t)) such that:
nodes and the external input driving the reservoir (Veesaa

and Schrauwen, 2009). A(y)) = (2% is minimal (2)

2. Methods

2.1. Reservoir Computing



0O00:-:--0 ICA layer wherexsea(t) is the input vector at timé consisting of a con-
Wi MM M yea(t) catenation of inputi(t) and reservoir stategt). Note that the
. — statesx(t) are generated by stimulating the reservoir with the
oo SFA layer . : ; i
. 9»049 MO YSFA(t))I input signalu(t) fort = 1, 2, ..., Ns by using (1), wheré\s is the
Wsea, " NN N number of samples.
/

/ The weight matriXxVsga is aNspa X (Ny + Nres) matrix cor-
responding to the eigenvectors found by solving (6).

/W reservoir
| x(t) 2.3. Independent Component Analysis
\ Independent Component Analysis (ICA) is a method used for
' sparse coding of input data as well as Ibtind source separa-
\W/\f/\f _________ '\ f inputs tion (Hyvarinen and Oja, 2000). The ICA model assumes that
T~0 0O - 0Oi u(t) a linear mixture of signalzy, X,...x, can be used for finding the

n independent components or latent varialdgs,...s,. The

Figure 1: RC-SFA architecture. The reservoir is a recurrawork where — observed values(t) = [xy(t), X2(t)...xn(t)] can be written as:
the inputs are mapped to a high-dimensional non-linearesp@be resulting

reservoir trajectory, generated by input stimulation,sedifor training the SFA X(t) = AS(t) (8)
layer, which extracts instantaneous slowly-varying sligrisom the reservoir . . . .
after learning. The subsequent ICA layer implements spardimg on the SFA ~ WhereA is the mixing matrix and(t) = [si(t), S2(t)...s(1)] is
outputs, extracting independent components from the SE¢ation. Training  the vector of independent components (bathnds(t) are as-

is unsupervised and takes place for the dashed conneaties ilh the figure.  gymed to be unknown). The vectsft) can be generated after
Solid lines represent fixed randomly generated weights. estimating matriA:

t) = Wx(t 9
under the constraints ) ® ®)
whereW = A1,
(y) = 0  (zeromean) (3)  The basic assumption for ICA is that the componentre
<Yi2>t = 1 (unit variance) (4) statistically independent. It is also assumed that thegade
Vi<iyy) = 0 (decorrelation and order)  (5) dent components have non-Gaussian distributions (Hygari

and Oja, 2000).
where(.); andy denote temporal averaging and the derivative Learning: In this work the matrixW is found with the
of y, respectively. FastICA algorithm (Hyvarinen and Oja, 2000). Before us-
Learning: The first step of the learning process is normaliz-ing ICA, the observed vectx(t) is preprocessed by centering
ing the input signak(t) to have zero mean and unit variance. (zero-mean) and whitening (decorrelation and unit vaganc
The common step of non-linear expansion of the input signa{Hyvarinen and Oja, 2000). FastICA uses a fixed-point itera
is not used in this work, but it is replaced by the non-lineartion scheme for finding the maximum of the non-Gaussianity
reservoir at the first layer of the RC-SFA architecture. t ca of wx(t) (wherew is a weight vector of one neuron). The basic
be shown that SFA learning corresponds to solve a genedalizéorm of the FastICA algorithm (for one unit) is described nex

eigenvalue problem (Wiskott and Sejnowski, 2002): 1. Initializew randomly

AW = BWA, (6) 2. Letw" = E{xg(w'x)} - E{g'(Ww x)w}
N 3. Letw = w*/||wH||
whereA := (xX"); andB := (xx");. 4. Do steps 2 and 3 until convergence,

where g is the derivative of a nonquadratic functio@
(Hyvarinen and Oja, 2000). Convergence means that vectors
w* andw point in the same direction. The next unitsin W

are found one by one such that the outpufs are decorre-

The eigenvectorsvy, wy, ..., W, Corresponding to the or-
dered generalized eigenvalugs< 1, < ... < Ang, SOlve the
learning task, satisfying (3-5) and minimizing (2) (see ki
and Sejnowski, 2002, for more details). This algorithm iargu
anteed to find the global optimum. Learning and inference dated. ) , .
very fast, as there ardfient methods for solving the general-  VWhereas the FastiCA algorithm may seem biologically un-
ized eigenvalue problem. The decorrelated SFA outputaextr '€2listic, an alternative biologically plausible implemtetion
instantaneous slowly-varying signals, which isfetient from of ICA can be achieved through non-linear Hebbian learning

low-pass filtering of the inputs. (Hyvar_inen and Oja, 1998)' . -
Although the eigenvalue problem for solving SFA is biologi- Architecture: The equation for the ICA layer is (by redefining

cally unrealistic, biologically plausible implementatiof SFA ~ variables):
exist(Hashimoto, 2003). _ _ _ _ Yica(t) = WicaYsra(l), (10)
Architecture: The SFA layer in our architecture (Fig. 1) is

denoted bysra(t): where:ysea(t) is the input vector at time(the observed values);

W ca is the mixing matrix Nica X Nsra); andyca(t) is the
Vsea(t) = WseaXsea(t), (7)  output of the ICA layer (the independent components).



sensors as well as for motor actuation, lasts 200 ms. The actu
ator sets the speed (st¢ggecond) of a stepper motor, where the
maximum speed is 1000 steps per second. In this work, the ac-
tuator is limited to the intervat[15, 385] steps (or+[0.198,

Objec 0°
| Sensors
AN - Distance
N - Color
\

‘ 5.08] cnis).
nY x = The eight distance sensors are sequentially read in grdups o
(a) SINAR (b) E-puck 2 while the robot is moving, that is, there are 4 cycles of sex1s

reading, where each cycle corresponds to 2 simultaneods rea

Figure 2: (a) SINAR robot model with distance and color semgositioned in ~ iNgS. Considering an acquisition time of 25 ms on average for
the frontal part of the robot{90 to 90). (b) E-puck robot with an additional g cycle, the total time spent on sensor reading is between 100

turret with 8 infra-red sensors capable of reading distsuficen 4 cm to 30 cm. and 120 ms.

Any resulting inconsistencies from this sequential sensor
reading during robot movement are not taken into accountwhe
using the RC-SFA architecture, so thatlearning has to cabe w
2.4.1. INAR this additional problem.

SINAR is a 2D autonomous robot simulator introduced in 1€ signal(t) is built by recording the eight distance sensors

Antonelo et al. (2006), where the mobile robot (Fig. 2(ajpin ~ during robot navigation and scaling them to the interval |0
acts with the environment by distance and color sensorshppnd ~ FOr @nalysis purposes, the robot position and orientatien a
one actuator which controls the movement direction (tughin €Stimated using pictures taken from a fish-eye camera placed

The SINAR robot model has seventeen (17) sensor positiorfd? & Structure localized above the environment. Robot reeog
distributed uniformly over the front of the robot, from <@  tion and pose tracking are accomplished using the Reaiivis
+90°. Each position holds two virtual sensors for distance angCftware (Kaltenbrunner and Bencina, 2007).

color perception. The distance sensors are limited in range .
that they saturate for distances greater than 300 distamite u 25, -Place cell reconstruction . . _ .
(d.u.), and are noisy - they exhibit Gaussian ndi{e, 0.01) Itis common to use population vector coding for interprgtin

on their readings. A value of 0 means near some object and&¢tivation from hippocampal place cells (Zhang et al., 998
value of 1 means far or nothing detected. At each iteratien th However, Bayesian methods have shown superior performance
robot is able to execute a direction adjustment to the lefoor fOr reconstructing the position of freely moving rats andeve
the right in the range [0, 15] degrees and the speed is cdnsta$’oWn to be biologically plausible (Zhang et al., 1998). In
(0.28 distance units (d.us). The SINAR controller, described this work, we use a probabilistic method based on Zhang et al.
in Antonelo et al. (2006), is a reactive intelligent navigat ~ (1998) to estimate the robot position from the activatiofG
system made of hierarchical neural networks which learmbpy | Units of our architecture. The reconstruction is based en th
teraction with the environment. After learning, the rolsoable ~ conditional probability

2.4. Robot Models

to eficiently navigate and explore environments, during which P(yicalX:)P(Xr)
the signalu(t) is built by recording the 17 distance sensors of P(xrlyica) = w (11)
the robot.

The priorP(x;) is the probability of the robot being at position
Xr = (X,y) and can be computed with the true recorded posi-
2.4.2. Real robot e-puck tion during robot navigationP(y|ca) is @ normalization term
The e-puck (Mondada, 2007) is a smalffdiential wheeled which does not need to be explicitly computed(ycalX;) is
robot which was built primarily for education purposes, bas  the probability of the activatiogica given that the robot is at
been largely adopted in research as well. The mobile rolt hdocationx,. As ICA unitsy,ca are statistically independent, the
a diameter of 7 cm and is equipped with 8 infra-red sensorsonditional probability can be computed as:
which measure ambient light and proximity of obstacles in a

N
range of 4 cm originally, whichféectively restricts the ability to P(yicalx) = ﬁ P(YiICAlxr) (12)
read distances to obstacles. Because of this, an exteusien t i1

for the e-puck was built with 8 longer-range infra-red seaso : ) . L
capable of measuring distances in the interval [4-30] cre (seWhereP(yI'CAlX') Is the probability of ICA unii given that the
Fig. 2(b)). robot is at positiorx,;, which can be approximated by comput-

ing the histogram of the da(y',calXr) = (V' ica)x /i, Where
(Y'\ca)x, is the mean activation of ICA unitin positionx, and
u is a normalization factor.

The reconstructed position is given by:

For recording datasets containing the robot’s sensormgadi
a controller written in Matlab steers the e-puck robot tigioa
Bluetooth connection. This controller performs basic vialH
lowing throughout the environment and it switches randamly
left or right wall following with a certain probability. When X = arg maxP(x;lyica) (13)
the robot switches from right to left wall (or vice-versd)may %
generate ellipsoid trajectories inside a room until it fiadsall ~ which is the most probable position given the ICA layer agctiv
to follow (see Fig. 8(b)). One iteration, for reading thetdicce  tion.

5



Sensors robot

3. Learning to Localize a Simulated Robot g
o s 7 e 15 4

3.1. Introduction R N

This section shows that, using the RC-SFA architecture, the 26 20 Y9 L
capability of self-localization of a small simulated mahibbot A . 9 ..
emerges in a self-organized way. The SINAR robot model 25 21 s 8 7 2
has 17 short-range noisy distance sensors (see Sectioh).2.4. i . . . . a
Based only on the information from these sensors, the RC-SFA 24 23 22 21 30 31 £
architecture can autonomously learn an internal repraient R . .
of the environment which allows for spatial coding and self- 36 37 36 35
localization. ) I w | .

A42 44 47 a
3.2. Experiments . a | P | 49 i ow "
40 41 45 46 50 51 52 53
The experiments are conducted using environment E1 500 0.0, ~

(Fig. 3), a big maze with 64 predefined locations spread gvenl

around the environment (represented by small labeled-triarfigure 3: (a) Environment E1. The environment is tagged WitHabels dis-
gles). Additional investigations are also performed with@d- ~ Played by small triangles.

ified version of the environment containing 11 obstaclesctvhi

randomly move around the environment, representing am extr The training of the RC-SFA architecture is accomplished in
source _of noise WhICh also changes the robot behavior and tra steps and useg6 of the input signal as the training dataset
jectory in the environment. _ (1/6 for testing). First, the SFA layer is trained by solving (6)

~ The experiments are built as follows. First, for generatitg  \here the inputs are the reservoir states and distancersenso
input signal, the simulated robot navigates in the envirenm (jike in (7). After Wsra is found, the output of SFA units
for 180.000 timesteps while its distance sensor measumsmen, ) t = 1,2, .., Ns is generated using (7). The second step
robot to visit most of the predefined locations with the SINAR EastiCA algorithm from Section 2.3 where the inputs for this
controller described in Section 2.4.1, which basically B®k |ayer are the output of the SFA units. The output siggats(t)

the robot explore the whole environment. After downsamplin gndy,ca(t) are upsampled to the original sampling rateu(ij.
the recorded input signalt),t = 1, ..., 180000, the number of

samples is reduced tg = 3.600. Next, the downsampled input 322 Results
signal is used to generate the reservoir se(gst = 1,2, ..., ns Fig. 4 show the output of 3 SFA units for a test input sig-

using (1). o _ . nal. The left plot, Fig. 4(a), show the outputs over time velaer
Fpr model optimization, we perform multiple grid ;earch €X-the right plots, Fig. 4(b), show the response of the neursns a
periments over subsets of the model parameters, usingabe pl 5 function of the robot position in the environment. In thit le

cell reconstruction method from Section 2.5 for positioti-es plot, the horizontal axis represents the time, the leftivakaxis

mation. denotes the real robot location (as given by the labeledghés
_ in Fig. 3), and the right vertical axis denotes the SFA ougdut
3.2.1. Settings the neuron. The colored dots represent the output of the SFA

The optimal combination of the model parameters are givemnit (where red denotes a peak response, green an intermedi-
in the following. The reservoir haldes = 300 neurons. The ate response, and blue a low response). The SFA output is also
SFA and ICA layers consists of 128 units each. The nonlinearshown as a black line in the same plot and as a colored trajec-
ity g(u) = u®is used for the fixed-point ICA algorithm from tory in the right plot. As SFA units are ordered by slowness,
Section 2.3. the first SFA unit has the slowest response. It shows a high

The input signal is downsampled by a factodp 50 (using  response for locations 40 to 64 and a low response otherwise.
the matlab functiorresample), which reduces the number of Units 12 and 24 vary much faster, encoding several locatibns
samples given the low speed of the robot. The leak rate in ththe environment. In Fig. 4(b), each of the units is shownrturi
reservoir ise = 0.4. two different time intervals, [88400] and [840,120000]. In that

The weight matriXWi, is initialized to -0.9, 0.9 and 0 with way, it is possible to observe that units 12 and 24 encodés$pat
probabilities 0.15, 0.15 and 0.7, respectively (which nseam information in a way which is dependent on the robot path, tha
input scaling of 0.9). While the connectivity between uméts is, their activation depends on where the robot has come from
not that important (Schrauwen et al., 2008), the scalindhef t in the environment (a characteristic comparable to EC célls
input connections have a great influence on the reservoir dyats in Frank et al., 2000).
namics (Verstraeten et al., 2007). The upper ICA layer builds on the SFA layer. During learn-

A summary of the configuration parameters is given in Tadng, ICA units seek to maximize non-Gaussianity so thatrthei
ble 1, where values in bold denote parameters found by optresponses become sparse and clustered, and also as indepen-
mization, andl; is the downsampling rate of the input signal. dent as possible. This form of sparse coding leads to the-unsu
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Figure 4: Response of SFA units 1, 12, and 24 for simulatiarisnvironment E1 on test data. (a) the SFA output over time.eBoh location (in time) given by
the labeled triangles in Fig. 3, there is a colored dot whededenotes a peak response, green an intermediate respotiddye a low response. The output is also
plot as a black line. (b) the same SFA output as a functionefabot position for two distinct time intervals,[8400] and [840120000].
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Figure 5: Response of ICA units for simulations in EnviromnEL on test data. (a) Response of ICA units as a functioneofdhot position. White dots denote
high activity while darker dots represent lower respon3ée results show the localized aspect of place cells or |08 (e peak response is characteristic of one
specific location). (b) The real robot occupancy grid (tapj the respective spatially-ordered ICA activation mayit@o), where black dots denote peak responses
and white represent lower responses.

Table 1: Parameter configuration

Environment (Robot) Ny Nres Nsea  Nica a Win
E1 (SINAR) 17 300 128 128 50 0.4 {+0.9,0
E2 (E-puck) 8 600 128 128 1 0.1 ({+2,0}
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Figure 6: The plot shows the mean activation of ICA units asirection of * 2087
the robot heading, which reveals the dependence of trai@é@duinits on the
direction of movement. Red denotes high response whiledloe response.

__ 600}

2 400}

pervised formation of place cells. Fig. 5(a) shows a number o > 2004

ICA units which code for specific adjacent locations in theien ol
ronment. The peak response is represented by white dots whil

lower responses are given gradually in darker colors. As the 5 6007

robot navigates, a sequence of high activity spots (whits)do < 400¢

is observable through these set of ICA units, each one coding L% 200¢

for a specific location in the environment. 00 5 10 15 20 5
In order to visualize the localized property of place cells Timestep (samples) x10°

more clearly, the ou_tput o_f ICA units are ordered_such they th (b) Position prediction in E1

have a spatial relationship. The reference locations (ftaim

64), shown in environment E1 (Fig. 3), are used to automat-

ically order the ICA layer. ICA units which do not respond El 2887

strongly enough in any situation are removed from the vector 1:’ 2001

Fig. 5(b) shows the real occupancy grid for the robot while it 0

drives in environment E1 and the respective ICA activati@pm

showing the spatially-ordered ICA responses (whetg is a 600k

test signal not used during learning). Stronger responses a g 400\W

represented by darker dots in the figure. This activation imap > 200

very similar to the real robot occupancy grid showing that th 0
place cells #iciently learned to cover most of the locations in

the environment. S 6007
We have repeated the experiments shown here 15 times with % 400
the same datasets, where each timeftexint random reser- 5 200
vpir |s created. These_distinct ex_periments have not shawn a % 5 10 15 20 o5 30
significant diferences in the quality of the learned place cells. Timestep (samples) x10°

Most ICA units show an activation which is dependent on
the direction of the robot's movement. This can be visually
Clonf.'rmed in Fig. 6, where a blue s-urface.rep.resents a low aGsgyre 7: Prediction of the robot position in environmentdiden the activa-
tivation and a red surface means high activation. It showas th tion in the ICA layer using the place cell reconstruction moeton test data. (a)
the activation of several ICA units (vertical axis in the fig)is, The true robot trajectory as connected black points (left) the correspond-

. . . . . ing estimated robot trajectory by the place cell reconsistnanethod given the
on average, hlgh Only for partICUIar robot directions (bomal activation in the ICA layer (right). (b) The true and predittrobot coordi-

axis in the figure). This is comprehensible since the environpates given by black curves and points in cyan color (grayplark-and-white
ment is composed of narrow corridors, which shapes the robgtints), respectively. The bottom plot shows the error asitclidean distance
trajectory so that the orientations that the robot may hage a _between true and predicted position. (c) The true and petli®bot position

in a modified version of environment E1, containing 11 dyrambving ob-

restricted by the environment Conflguratlon' So, as thetrObostacles. Mistakes can be observed when the predicted poioyan (gray for

direction is not, in general, a constantly fast-varyingtiee, it  black-and-white prints) deviate from the black line (alstetted by the error
is also learned by SFA and ICA units. plot).

Using the probabilistic place cell reconstruction methoaf
Section 2, the predicted robot position during robot naviga

8

(c) Position prediction in E1 with dynamic obstacles



is computed given the activation in the ICA layer. The trud an
predicted trajectory can be seen in Fig. 7(a) showing that th
RC-SFA architecture is able to learn an internal spatiateep
sentation of the environment. Some jumps in the predicted po
sition can be observed, which also occur with the estimabed p
sition computed with signals recorded from hippocampai@la
cell of rats (Moser et al., 2008). Fig. 7(b) shows the same tru
and predicted positions in terms of the x and y coordinates of
the robot in the world frame along with the respective error,
given by the Euclidean distance between true (black lin€l) an
the predicted (points in cyan color) positions. The meanh tes (a) Environment E2
error is 17.2 distance units - see Table 2. i
Another experiment with environment E1 is performed, in
which 11 dynamic obstacles were artificially added to the en- o7
vironment. These obstacles were constantly moving araund i os IR
a random way, possibly closing passages and forcing thd robo 8¢

0.8

Eo.
to follow another way. That yields more stochasticity in the >
environment and in the robot behavior. The recorded dataset o4
consists of 20@00 samples. Training and parameter config- 0s

uration are the same as in the previous experiment. The test
error of 108 d.u., shown in Table 2, is clearly higher than mhe ,
the environment is not dynamic. Fig. 7(c) shows the network 6w oa b g 08w b B

predictions as points in cyan and the true position as a black

curve. Despite this higher error rate, the trained systern-is

bust enough to recover from intense environment stochigstic Figure 8: (a) Environment E2 (120 cm x 90 cm), made of 3 roongsagon-
given by dynamic obstacles and a period of miss-predictiongecting corridor. The position of the robot is tracked witlcaamera placed
without the use of odometry, being also able to recover fronsbove the environment for analysis purposes. (b) Traje¢togray) generated

0.2} 3

(b) Trajectory in environment E2

robot kidnapping situations as in Antonelo et al. (2008). by the robot controller in environment E2 for 60.000 timestéor 3.3 hours).

4. Learning to Localize a Real Robot the place cell learning. This section shows results conisige
the most random behavior, that js= 0.03, which practically

4.1. Introduction means that there is a probability of circa 60% for inverting t

In the previous section, experiments showed that the Rc-sgairection of movement while the robot is navigating insiceeo
architecture can learn spatial representations from a tiilkze ©f the rooms.
simulation environment based on information from 17 semsor  For model optimization, grid search experiments are per-
This section elaborates on experiments with the e-pucktiobo formed over a subset of the model parameters as in the peeviou
real environments. The robot has only 8 infra-red sensotstwh Section, using the place cell reconstruction method froit Se
measure distances to environmentwalls. This setup is nibre d tion 2.5 for position estimation.
ficult for two main reasons: stochasticity of the robot cotér
and a limited number of sensors. If enough training sampleg.2.1. Settings

can be collected, then the architecture can autonomouiy le  Nayigation in environment E2 resultedliy = 192000 sam-

to encode spatial information. ples of sensor measurements, which means approximately 11
_ hours of robot navigation. The number of inputsnjs = 8
4.2. Experiments corresponding to eight distance sensors. Using the pldte ce

This section shows results considering a real environmerfeconstruction method to estimate the robot position frben t
with 3 rooms and a connecting corridor (see environment E2 i'CA layer activation, we found the following optimal parame
Fig. 8(a)). The robot navigates in this environment acaayéh  ters: nes = 600 neurons in the reservoir; SFA and ICA layers
the controller described in Section 2.4.2. So, it can staygaa  With nspa = Nica = 128 units; reservoir’s leak rate = 0.1.
ing in one room for a random time interval, eventually makingThe nonlinearityy(u) = uexp(u?/2) is used for the fixed-point
ellipsoid trajectories or leaving the room towards the icomr  ICA algorithm from Section 2.3.

(see Fig. 8(b)). The randomness of the robot movementis-dete Each experiment during the optimization process is execute
mined byp (see Section 2.4), which is the probability of chang- 10 times, with each run considering a randomly generates+es
ing the movement direction at each second. We have made exeir.

periments with dferent settings p = 0,p = 0.02p = 0.03, The input weight matrixVj, is initialized to -2, 2 and 0 with
and in any case, ICA units would learn to code for locationsprobabilities 0.15, 0.15 and 0.7, respectively (which nseam
although the more random the movement, the moficdlt  input scaling of 2). The RC-SFA architecture is trained apst



Table 2: Results using the place cell reconstruction method

Environment (Robot) Dimensions  Type Architecture  TesbErr
E1 (SINAR) 800x600d.u. Simulation RC-SFA 17.2d.u.
E1 with dynamic obstacles (SINAR) 800x600 d.u. SimulationC-8FA 108 d.u.
E2 (E-puck) 120x90 cm Real RC-SFA 11cm
E2 (E-puck) 120x90 cm Real SFA 23cm

as already stated, and used9 of the input signal (17.800
timesteps) as the training dataset arid@ (192200 timesteps)
is used for testing. After training, the ICA units are orakby
kurtosis

kurt(y) = E{y*} - 3(E{y?})? (14)

By using the probabilistic method described in Section 2.5,
we can evaluate the capability of trained ICA units in terrhs o
robot localization performance. Fig. 11 shows the estichate
robot position using equation (13) as well as the true robot
position for 3000 timesteps. The test error, given by the Eu-
clidean distance betweeq andX, was 01188 for these 3.000

such that the first unit has the most kurtosis. The above eximesteps. It can be seen in the figure that the estimated posi

pression simplifies t&{y*} — 3 once we assumegis of unit
variance.

tion matches very well with the true robot position, confingni
the good localization capability which emerged from thewins

pervised learning of the RC-SFA architecture. Furthermeee
4.2.2. Results can see erratic jumps of the estimated robot position irfigpis
This section shows results after training the RC-SFA archiure, which is actually also observed in the estimated ositi
tecture. The mean activation of 4 SFA units, rescaled to thérom the activity recorded from hippocampal place cellsatér
interval [0, 1], as a function of the robot position is shown in (Zhang et al., 1998).
Fig. 9(a). The slowest SFA feature shows a high response in
room 1 which gradually decreases as it gets further to room.2.3. Robustnessto Noise
3. The third slowest feature has a low response in the middle We also tested the robustness of the proposed architeoture t
room and a high response otherwise. Faster-varying fegturedifferent levels of Gaussian noise on sensor measurements. In
like units 80 and 128, show high responses in multiple locafig. 12, the mean and standard deviation of the test ern@ngi
tions of the environment, characterizing low place selégtin by the Euclidean distance between true and predicted positi
a way similar to entorhinal cortex cells of rats in Frank et al are displayed for noise levels ranging from 1% to 50%. The er-
(2000). ror stays very low even with 10% (up to 15%) noise on sensors.
The mean activation of ICA units as a function of the robotFrom 20% on, sensors become too noisy and do not convey
position hj(x;) is computed by averaging out the response ofuseful information, which causes the error to be maximum.
each ICA unit over a discrete grid of evenly spaced robot po-
sitions. Four units’ mean activation are shown in Fig. 9(b). 4.2.4. The Role of the Reservoir Recurrent Architecture
is clear that these units learned to code for particulartiona The dynamics of the reservoir is best fine-tuned by grid
in the environment, i.e., the place fields of the cell, présgra. searching two parameters: the input scalingVdf, and the
peak response at the center of these locations. spectral radiugimal (Verstraeten and Schrauwen, 2009) (see
The mean activation does not show whether the unit is inSection 2.1). Fig. 13 shows that the nonlinear reservoir per
variant to the robot movement direction. To investigateudbo forms better fojdnax| <= 1, on average. The reservoir’s dy-
the directionality aspect of ICA units, Fig. 10(a) showsesal  namic nonlinear regime is further tuned by choosing an opti-
plots, where each row corresponds to an ICA unit, and eachal input scaling. Higher values of the input scaling yield a
column considers robot positions with specific robot hegslin improve in performance, as shown in the figure. The optimal
Each plot displays robot positions associated with a heglin combination is an input scaling of 2.5 apighax| = 0.9.
in cyan color, whereas the robot positions plotted in maroon Leaky integrator neurons can also enhance performance if
color represent a strong activation of the corresponding IC the input timescale does not optimally match the reservoir
unit. For example, unit 5, in the first row, is strongly acta@ timescale. The leak rate in (1) controls how fast (or slow)
at the right part of the corridor when the robot is headingtrig reservoir units respond to input stimuli. In Fig. 14, it issgb
(6 = 0+ «). The last column of this figure shows the mean ac-ble to see that there is an optimum for the leak rate, when it is
tivation as a function of the robot heading, clearly showiimgg  approximately 0.07. It also shows that the short-term mgmor
direction dependence of these ICA units. Fig. 10(b) is agoth in the reservoir is an important characteristic for thené@zg of
plot which indicates the directionality dependence of IG#s,  the SFA and ICA layers and, therefore, for the performance of
by showing the mean activations of each ICA unit as a functiorthe localization capability of the robot.
of the robot heading, where the most representative (witetmo In order to confirm the importance of the reservoir in our
kurtosis) ICA units are direction-dependent. RC-SFA architecture, experiments are performed with aiarc
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(a) 4 SFA units (b) 4 ICA units

Figure 9: Activation of SFA and ICA units in environment E2edRdenotes a high response whereas blue denotes a low resfmyiglean activation of SFA units

as a function of the robot position in the environment, riestéo the interval [0,1]. (b) Mean activation of place célSA units) as a function of the robot position
in the environment.

1 Mean Activation vs
e 0=+« Robot heading

unit 5

T T T T
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(b) Mean activation of ICA units as a function
of the robot heading

unit 10

unit 38

0 pi 2p

(a) Response of ICA units as a function of the robot heading

Figure 10: Results after training with the e-puck robot imiemment E2. (a) Directionality dependence of place cefiivation for test data. Each row represents
a place cell, where points in cyan (lighter) color denotepbsitions occupied by the robot for given directighim the environment and points in maroon (darker)
color represent the positions where the place cell resgamgehigher than a certain fixed threshold. The last columwslthe mean activation of a place cell as
a function of the robot heading. (b) Mean activation of plae#s as a function of the robot heading. The plot shows thatactivation of most place cells are
dependent on the robot heading. The results are shown faidzs Red denotes a high response whereas blue denotesesfmmse.
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Figure 11: Predicted robot position in environment E2 on tieda using the Bayesian place cell reconstruction metbo@®.000 timesteps of navigation. (a)
Results using the RC-SFA architecture. The true and pestlicibot coordinates are given by black curves and pointyan color (gray for black-and-white
prints), respectively. The bottom plot shows the error asBhclidean distance between true and predicted positmrikRésults using an architecture without the
reservoir, but with a time window and non-linear expansiartt@ input signal for the SFA layer.
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Figure 12: Robustness to Gaussian noise. The plot shows ¢he and the  Figure 13: Input scaling vs. Spectral radius. The plot shtvesmean and
standard deviation of the localization error on test dasanfenvironment E2  the standard deviation of the test localization error iniremment E2 for dif-
considering dierent noise levels on all 8 robot distance sensors. Traitég  ferent combinations of input scaling Wi, and the reservoir’s spectral radius
uses only 0.5% noise on sensors in all experiments. Eachimeyd is run for |Amax|. Each experiment is executed 5 times with randomly gengratservoir

10 times (the plot shows the mean and the standard deviation) weights. Input scaling of 2.5 andmax| = 0.9 yields the minimum test error
(black surface represents low error while white surfaceesmonds to higher
error).

tecture which replaces the reservoir by a non-linear expans

on a_t|me-delayed doyvnsam_pled |_nput signal. The non—Iln_earrlot as good as with the RC-SFA model in Fig. 11(a). Interme-
function expands the input signal in the space of polynasnial

of degree 2. We optimized the model by grid searching the fol_d|ate locations are not coded at all: note that the predixted

lowing parameters: downsampling rateand size of the time coordinate often presents big jumps.
windowt,,. The best performance in terms of the Euclidean dis-

tance between true and predicted robot position, which2$,0. 5. Discussion

is attained foid; = 32 andty = 2.

So, this architecture uses a reduced and smoothed input sig- This work has proposed a biologically-inspired hierarahic
nal by a downsampling process which convédts= 192000  architecture with three layers for learning sensor-baged s
samples intd\s = 6000 samples. It also uses a time window oftial representations of a robot environment in an unsupedvi
size 2 which fectively produces; = 16 inputs after the non- way. The proposed model does not use any idiothetic signals
linear expansion step. Table 2 shows that this model hag a tefor path integration (or odometry) as most models do (Busges
error which is almost double of the error using the RC-SFA aretal., 2007; Hasselmo, 2008; Arleo et al., 2004; Stroesskh.,
chitecture. In Fig. 11(b), the predicted robot positiomgghis  2005; Milford, 2008), and is the first to rely solely on a liett
model and its associated error are shown. Although it learnenumber of raw distance sensors for unsupervised learning of
to code for some locations in the environment, the precigon place cells.
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ality component of place cells (Frank et al., 2000; Eichemba
04 et al., 1999; Brunel and Trullier, 1998). Most of these com-
€ 0.35 putational models implement path integration using ickdtith
g input, despite the current lack of knowledge with respedhé&
g 03 mechanisms of path integration in the brain like the intégna
g 0.25 of self-motion signals with allothetic input (Eichenbautrak,
‘g 1999). On the other hand, in the proposed RC-SFA architec-
= 0.2 ture, the reservoir integrates the allothetic input (diseasen-
0.15 ] sors), forming a trajectory in state space which SFA units us
to learn spatial features from a given environment. This-com

01 putation can be compared with optical flow, in the sense that

the reservoir provides a temporal memory of the stimuliestre
which can be used for distance estimation, that is, theveser
Figure 14: Influence of the reservoir’s leak rate on perforoea The plot shows s involved in maintaining an estimate of the robot location

the mean localization error (and its standard deviationjeshdata from envi- . L .
ronment E2 considering filerent leak rates of the reservoir. Each experiment a temporary time perIOd in the absence of the distance Sensor

is executed 10 times with randomly generated reservoir higige = 0.07 Input.
yields the lowest test error. Learning in SFA is comparable to Principal Component

Analysis (PCA) in terms of complexity. Furthermore, while b
) ) ) ) ologically plausible implementations of SFA exist (Hashtm
The flrst_ Iay_er of the architecture is a reservoir of recur_ren 2003), there is experimental evidence showing that the-slow
nodes, which is used as a form of temporal kernel for projectyess |earning principle of SFA is present in the visual corte
ing low-dimensional inputs (e.g., a small number of diseanc (Li and DiCarlo, 2008).
sensors) to a dynamic high-dimensional space. It integrate athough the current ICA implementation may seem biologi-
the noisy distance sensory input for making it possible to in o5,y ynrealistic, a more biologically plausible learnischeme
fer the robot position from the history-dependent trajgettf ¢4, yenerating place cells at the top ICA layer from the non-
the dynamic reservoir. The second layer learns in an unsupgj,cajized representation of SFA units can be implemented by
vised way to derive slowly-varying features from the resarv competitive learning (Franzius et al., 2007b) or non-liriéeb-

states and also possibly from the input layer, using the Slow;,n, learning (Hyvarinen and Oja, 1998).
Feature Analysis (SFA) algorithm. These slow feature s '

latent signals present in the input signal which vary in avsio
timescale, such as the position or the orientation of a riolits 5.1. Related works
environment. If the position can be inferred from given itsou |t has been shown in Franzius et al. (2007a) that a hierarchy
(e.g., the reservoir state), SFA can extract it based onltie s of SFA layers with increasing receptive fields at upper layer
ness concept. The top layer produces independent comysone@hd a top ICA layer can be trained to code for either the rat's
which are a linear combination of the SFA features, using@ind position or the rat's head direction depending on the moveme
pendent Component Analysis (ICA). It learns a sparse codingattern of a simulated rat. Their model is based on the high-
on the SFA outputs, resulting in units which are activately on dimensional input from a camera which simulates the’3i20d
for a specific position in the robot environment. of view of the rat. Simple environments such as linear tracks
Using a probabilistic place cell reconstruction methodor rectangular arenas with distinct textures set for each wa
(Zhang et al., 1998), the robot position (coordinates in thenake it possible to infer the rat's position from a single im-
world’s frame) is estimated from the activation inthe ICAda  age. The similarities between their model and the one pexpos
This estimated position has shown that the ICA layer in the RCin this paper refer to the layers which learn by SFA and ICA.
SFA architecture has an activation correlated to the robskp The main dfferences are that we use a dynamic reservoir at the
tion, confirming the powerful capability for sensor-basedur  first layer, which projects a low-dimensional input into ghni
pervised learning of spatial representations. Thesetseat®  dimensional non-linear space and which proved to be essenti
obtained in simulated environments considering a robotehod for learning spatial representations with such a small rermb
with 17 distance sensors, as well as in real environmentgusi of distance sensors. Moreover, our model copes with sensor

5 -1 -0.5
Leak rate (Ioglo(a))

the e-puck robot with 8 infra-red distance sensors. aliasing, where multiple environmental states map to tineesa
The SFA layer in the proposed model has shown low plac@erceptual sensory input.
selectivity, with similarities to entorhinal cortex (ECglts of This means that it is not flicient to consider only the current

rats in W tracks (Frank et al., 2000), whereas the ICA layetime step to determine the robot location, but the historthef
has presented high place selectivity and an activationtwisic input stream - a property which the reservoir naturally has.
dependent on the robot path, similarly to hippocampal «#lls In Wyss et al. (2006), a cortical hierarchy of layers is pro-
rats in Frank et al. (2000). posed which learn by optimizing an objective function that

The directionality aspect of place cells in the ICA layer istakes into account temporal stability and temporal detaire
in accordance with other works in the literature which showtion between units. All units are leaky integrators promdgli
that environment shape and robot behavitea the direction- them with a local memory trace.
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