
Supervised Learning of Internal Models for Autonomous Goal-Oriented
Robot Navigation using Reservoir Computing

Eric A. Antonelo and Benjamin Schrauwen

Abstract— In this work we propose a hierarchical architec-
ture which constructs internal models of a robot environment
for goal-oriented navigation by an imitation learning process.
The proposed architecture is based on the Reservoir Computing
paradigm for training Recurrent Neural Networks (RNN). It is
composed of two randomly generated RNNs (called reservoirs),
one for modeling the localization capability and one for learning
the navigation skill. The localization module is trained to detect
the current and previously visited robot rooms based only on
8 noisy infra-red distance sensors. These predictions together
with distance sensors and the desired goal location are used by
the navigation network to actually steer the robot through the
environment in a goal-oriented manner. The training of this
architecture is performed in a supervised way (with examples
of trajectories created by a supervisor) using linear regression
on the reservoir states. So, the reservoir acts as a temporal
kernel projecting the inputs to a rich feature space, whose
states are linearly combined to generate the desired outputs.
Experimental results on a simulated robot show that the trained
system can localize itself within both simple and large unknown
environments and navigate successfully to desired goals.

I. INTRODUCTION

Autonomous robots should be able to learn their abilities
through interaction with the environment. Learning its own
internal rules for sensory-motor coupling in close interaction
with the environment represents a higher degree of autonomy
for a robot. This also implies adaptation and robustness to
noise and unpredictable events.

Standard models of deliberative systems for autonomous
navigation rely on a prede�ned set of rules for path planning.
A lot of design effort has to be put in creating a map of the
environment and modeling all possible events and situations
during robot navigation. It can also be very computationally
expensive. The probabilistic SLAM approach represents the
state-of-the-art in simultaneous localization and mapping [5],
but it lacks in adaptation and learning capabilities and usually
requires fully equipped robot platforms with expensive laser
scanners for environment mapping. Furthermore, it usually
has rather large computational requirements.

Recent adaptive navigation models have been proposed
in the literature which either try to solve challenging real-
world problems [13], [19] or are oriented towards modeling
an animal's capability for spatial navigation [4], [20], [7].
Machine learning techniques are used in both contexts and
more biologically-inspired methods can be preferred depend-
ing on the task and the context. This work could be situated

Eric A. Antonelo is sponsored by a BOF grant from Universiteit Gent.
E. A. Antonelo and B. Schrauwen are with Electronic and Infor-

mation Systems Department, Ghent University, 9000 Ghent, Belgium
eric.antonelo@gmail.com

Draft paper to appear at ICRA 2010.

in between the real-world robotic problems and biologically-
inspired models. In this context, we employ a biologically
plausible method called Reservoir Computing (RC) [23] to
train a mobile robot controller in a supervised way. RC
is a unifying term for techniques which ef�ciently train
Recurrent Neural Networks (RNNs). They are know as Echo
State Network (ESN) [9] for analog neurons or Liquid State
Machines (LSM) [11] for spiking neurons. In these systems,
the RNN is areservoir of randomly generated nodes which
projects the input to a high-dimensional space (acting likea
non-linear kernel). The reservoir is not trained at all, butonly
a readout output layer, usually by linear regression methods.
Fig. 1 shows an example of a RC network.

This work proposes a hierarchical architecture composed
of two reservoir modules, one for localization and another
for navigation. The localization reservoir receives inputfrom
only 8 low-accuracy distance sensors and determines the
current and previously visited robot room. The mapping
between reservoir states to the predicted rooms is learned
in a supervised way from examples of robot trajectories
in the considered environment. In a second learning stage,
the navigation reservoir is trained with several examples
of routes from a source location to a goal location, using
inputs from the localization reservoir (predicted locations),
the distance sensors and the desired goal location (given as
input to the system). So, this navigation module integrates
different types of input and can simultaneously learn reactive
(obstacle avoidance) and deliberative (sequence of decisions)
behaviors (also shown in [3] for delayed response tasks like
the road sign problem).

It is important to see that the internal reservoir memory is
essential for learning an internal model of the environment
and of the robot task. The recurrent reservoir has states which
re�ect the recent history of inputs, representing a short-term
memory capable of combining and dealing with different
sources of information. Its inherent capability for modeling
temporal non-linear systems makes it very interesting for
constructing internal models. As argued by J. Tani [21],
behavior-based systems without internal models are blind.
So, by combining reservoir computing and goal-oriented
navigation, we aim at creating a unifying and ef�cient
method for imitation learning of deliberative and reactive
behaviors (and its underlying internal models).

The ability to learn an implicit map of the environment can
also be found in rodents. Their hippocampus have spatial pro-
cessing units, called place cells, which responds maximally
for speci�c parts of the environment (called place �elds),
effectively mapping the whole environment [15]. A similar

Fig. 1. Reservoir Computing network. The reservoir functions like a
temporal kernel which projects the input to a rich feature space. Solid lines
represent �xed connections. Dashed lines de�ne connections which should
be learned.

approach is used in this work where distinct outputs in the
localization module are used to encode speci�c locations
in the environment, given low dimensional sensory input,
resembling hippocampal place cells of rodents. Although
our model does not use any form of path integration (e.g.,
odometry), the reservoir provides a short-term memory of
previous inputs, making it possible that the robot maintains
an estimate of its current location for additional timesteps
even in the absence of sensory input.

Relevant research in learning the localization capability
for small mobile robots using RC can be found in [2] in a
supervised learning approach and in [1] in an unsupervised
way. In these context, the current work is the �rst to integrate
localization and navigation using the Reservoir Computing
paradigm. Several recent works have been using RC in
robotics: in [16] for mobile robot modeling and control, in
[10] for movement generation, in [17] for motor control, and
in [22] for underwater robot control.

The advantages of the current approach are three-fold:
no special environment landmarks are required; it works
for small mobile robots having few low-accuracy distance
sensors; and deliberative and reactive navigation compo-
nents are learned in an imitation-based way with the same
hierarchical architecture. We also show in this paper that
robot kidnapping can easily be overcome even if the robot
is not trained with this situation, showing a generalization
capability of the proposed system.

The experiments are accomplished with a simulation
model of the e-puck robot extended with longer-range ([5cm-
80cm]) infra-red sensors in the Webots environment. It is
shown that proposed system can learn with examples to
drive a robot to a desired goal location in simple and bigger
(9 rooms) environments using only 8 low-accuracy sensors
and the goal location as input. This paper is organized as
follows. In Section II, reservoir computing, the robot model
and the hierarchical model are described. Experiments and
its associated results are presented in Section III. Finally,
conclusions and future work are given in Section IV.

II. METHODS

A. Reservoir Computing

The RC model we use is based on the Echo State Network
(ESN) approach [8]. The state update equation for the

reservoir is given by:

x(t+1) = f ((1� �)x(t)+ � (W in u(t)+ W resx(t)+ W res
bias)) ;

(1)
where: u(t) represents the input at timet; x(t) is the
reservoir state;� is the leak rate; andf () = tanh() is
the hyperbolic tangent activation function;W in and W res

bias
are the weight matrices from input and bias to reservoir,
respectively andW res represents the recurrent connections
between internal nodes of the reservoir. The initial state is
x(0) = 0. A standard reservoir equation (without the leak
rate) is found when� = 1 .

The output of the RC networky (t) is given by a linear
combination of the reservoir states plus a bias:

y (t + 1) = W out x(t + 1) + W out
bias : (2)

The non-trainable weightsW in and W res are randomly
initialized. Each element of the connection matrixW res is
drawn from a normal distribution with zero mean and unit
variance. This matrix is rescaled so that the reservoir has
the echo state property [8], that is, its spectral radiusj� max j
(the largest absolute eigenvalue) of the linearized systemis
smaller than one [8]. This means that the reservoir should
have a fading memory such that if all inputs are zero, the
reservoir states also approach zero within some time period.
For most applications, the best performance is attained with a
reservoir that operates at the edge of stabilityj� max j = 0 :98.
The initialization of the reservoir parameters are given in
Section III.

Next, consider the following notation:ni is the number of
inputs; nr is the number of neurons in the reservoir;no is
the number of outputs;ns is the number of samples.

The training of the output layer consists of �nding the
weightsW out which minimizes the sum of squared errors

n sX

t =1

(y (t) � ŷ (t))2 ;

by the Least Squares Method:

MW out = Ŷ (3)

W out = (M > M) � 1M > Ŷ ; (4)

where: M is the matrix of sizens � (nr + 1) with the
generated reservoir states collected row-wise where the last
column of M is composed of 1's (representing a bias).
The desired outputs (e.g., location or motor actuators) are
collected row-wise into a matrix̂Y .

Note that the other matrices (W res; W in ; W :
bias) are not

trained at all. The last two matrices (connections from
input/bias to reservoir) are con�gured in Section III. The
learning of the RC network is a fast process without lo-
cal minima, which is not the case for algorithms such as
BackPropagation-Through-Time (BPTT).

The supervised learning procedure consists of two stages
as follows. First, it is necessary to generate several examples
of robot trajectories from a source location to a goal location
(see Section II-B). All required data are recorded during

this stage such as the distance sensors and the goal location
(input) and the robot location and desired motor actuators
(output). The second stage involves the training of the
RC networks with the recorded data (see Section II-C).
Afterwards, the trained system can be used to drive the robot
to speci�c target locations given as input.

B. Robot Model and Dataset Generation

The robot model used in the following experiments is
the simulated e-puck robot [14] extended with 8 infra-red
sensors which can measure distances in the range [5-80]
cm. We use the Webots simulation environment [12] for data
generation and navigation experiments, providing physically-
realistic simulations (the simulator detects collisions and
simulates physical properties of objects, such as the mass,
the velocity, the inertia, the friction, the spring and damping
constants, etc.). A simulated timestep in Webots takes 32 ms.
The original simulation model of the e-puck has a 5.20 cm
diameter (10 cm when modi�ed with the extra turret for the
infra-red sensors) and its actuators are 2 stepper motors. In
the simulation, the robot wheels have a radius of 2 cm.

While the robot navigates in the Webots simulation en-
vironment, a dataset (with sensors, actuators, and locations)
is recorded into a Matlab environment (communication im-
plemented with TCP/IP sockets). The robot controller used
to generate these training datasets is composed of a simple
linear obstacle avoidance algorithm (the Braitenberg vehicle
[6]) which is steered by a higher level planner (e.g., a
program or a human supervisor). The speed (steps/second) of
the robot is variable (the maximum speed is 1000 steps per
second). In this work, the actuator is limited to the interval
� [0, 300] steps/s (or� [0, 3.77] cm/s).

C. Hierarchical Architecture

The proposed architecture is based on the following
principles: autonomous navigation is achieved by a process
of imitation leaning which trains the proposed architecture
with examples of correct goal-oriented trajectories; and goal-
oriented navigation should be achieved by learning a spatial
representation of the environment by the robot's own sensors
(embodied cognition). The second point implies that the
system does not know the map of the environment a priori.
The reservoir architecture and training procedure follow the
Reservoir Computing paradigm, which has been associated
to cerebellar functioning in real brains [26]. We will call this
architecture from now on as Reservoir Computing Hierarchi-
cal Controller (RC-HC).

The RC-HC architecture is composed of two reservoirs:
the localization reservoir and the navigation reservoir (see
Fig. 2). The localization module predicts the current robot
location as well as the previously visited robot location given
only 8 distance sensors as input. The reservoir projects the
robot's sensors to a high-dimensional space whose states
are linearly combined to detect the robot location [2]. This
mapping is learned with linear regression (see Section II-
A). This reservoir has a low leak rate� which provides
more memory to hold information on past inputs. The output

Fig. 2. Hierarchical architecture with localization and navigation modules.
The navigation and localization reservoirs are randomly generated recurrent
networks which are not trained, but left �xed. Trainable components are
shown in shaded rectangles. The sensory input feeds both reservoirs, being
mapped to a high-dimensional space, where learning occurs. The navigation
reservoir receives input also from the localization module and the target
location to determine the desired motor actuators.

layer of the localization module (see Fig. 2) creates a spatial
representation of the environment which is comparable to
the representation provided by the place cells found in the
hippocampus of rats (areas CA1 and CA3, [15]). These place
cells increase activity whenever the rat (robot) is in a speci�c
region of its environment (which de�nes the place �eld of
the cell).

The navigation reservoir accounts for steering the robot
given several sources of information. It receives input from
the robot distance sensors so that it can ef�ciently avoid
obstacles and input from the localization module and the goal
location for decision making (planning). All these inputs are
integrated in onefast reactingreservoir (with a high leak
rate) whose states are linearly combined to set the motor
actuators for the left and right wheels.

The learning process is divided in two stages. First,
the localization module is trained with examples of robot
trajectories to detect the current and previously visited robot
room using the controller described in last section. After
this, we train the navigation module with new examples of
robot trajectories, but now using the prediction of the trained
localization module as input.

By rewriting equations (1) and (2) for the localization
module, we get:

x loc (t + 1) = f ((1 � � loc)x loc (t) + � loc (W loc
in udist (t)+

W loc
resx(t) + W res

bias)) ;

y cloc (t + 1) = g(W cloc
out x loc (t + 1) + W out cloc

bias) (5)

y ploc (t + 1) = g(W ploc
out x loc (t + 1) + W out ploc

bias); (6)

wherey cloc andyploc are vectors of sizenl representing the
predicted current and previous robot locations, respectively;
nl is the number of locations or rooms in the environment
and g(x) is a winner-take-all function which gives +1 for
the highest input and -1 otherwise. The other parameters and
variables have the same meaning as the ones in Section II-
A, but have new subscripts for identifying the localization
reservoir.

Analogously, the equations for the navigation module are

(a) E1 (b) E2

Fig. 3. Webots environments used for experiments. (a) Environment (165
cm x 150 cm) with 3 goal rooms and a connecting corridor. (b) Large
environment (300 cm x 300 cm) with 9 rooms (goal locations are 1, 3, 7
or 9). Dashed lines represent boundary limits between rooms.

(a) E1 (b) E2

Fig. 4. Samples of robot trajectories used as training examples for the
RC-HC controller. (a) Trajectory in E1. (b) Trajectory in E2.

as follows:

xnav (t + 1) = f ((1 � � nav)xnav (t) + � nav (W nav
in umulti (t)

+ W loc
resx(t) + W res

bias)) ;

y nav (t + 1) = g(W nav
out xnav (t + 1) + W out nav

bias) (7)

whereynav is a vector with the speeds for the left and right
wheels of the robot; andumulti (t) is a concatenated input
vector consisting of the distance sensors, the current and
previous predicted locations, and the goal location

umulti (t) = [uT
dist (t)y T

cloc (t)y T
ploc (t)uT

goal (t)]
T

.
The weight matricesW in Equations (5), (6) and (7) are

trained using linear regression as explained in Section II-A.
All other weight matrices (connecting to the reservoir) are
randomly generated at the beginning of the experiment.

III. EXPERIMENTAL RESULTS

We have evaluated the proposed RC-HC hierarchical ar-
chitecture in two environments. Environment E1 is composed
of three rooms connected by a central corridor (see Fig. 3).
A second, larger environment E2 is made of 9 rooms with
open doors connecting them. For the �rst environment,
there are two training datasets, one consisting of 500.000
samples (4 hours and a half of simulation time) for training
the localization module in a �rst step and the other one
consisting of 100.000 samples for training the navigation
reservoir in a second step. These training datasets contain
examples of trajectories of a robot continuously going from

TABLE I

PARAMETER CONFIGURATION FOREXPERIMENT IN ENVIRONMENT E1

Reservoir n i no n r � d t W res
inp

Localization 8 8 400 0.01 10 f� 1(30%); 0(70%)g
Navigation 19 2 400 1 5 f� 1(50%); 0(50%)g

an initial room to a target room (see Fig. 4(a) for an
example) - there are 6 possible routes in environment E1.
The datasets were downsampled by a factor ofdt = 10
and dt = 5 respectively (values empirically chosen to give
best performance), resulting in two datasets of 50.000 and
20.000 samples, respectively. As the these sampling rates
are different from each other, signals from the localization
reservoir (y cloc and yploc) are upsampled to the same
sampling rate of the navigation reservoir before they are
used as input to that module. A summary of the parameter
con�guration is given in Table I. Some of these parameters
are described in Section II-A. In this table, the connections
in W res

inp are initialized to +1, -1 and 0 with probabilities
0.15, 0.15 and 0.7 (0.25, 0.25 and 0.5), respectively, for the
localization reservoir (navigation reservoir). These settings
for the connections are not crucial for the experiments in
this work (they are usually chosen to be sparse). Parameters
� and dt were found by a grid search in the case of the
localization module (of�ine testing), and empirically in the
case of the navigation module (online testing).

The localization performance on test data (consisting of
50.000 samples downsampled to 5.000 timesteps) is shown
in Fig. 5. It can correctly detect the current robot room 97.5%
of the time and the previously visited room 97.8 % of the
time (this result is consistent if different randomly gener-
ated reservoirs are considered). Examples of the successful
trajectories generated by the RC-HC system after training
are shown in Fig. 6. The robot starts in one of the rooms
(position indicated by a circle) and navigates to the goal
room (given as input) with the end position represented by
a small cross. The trajectory is plotted such that its color
changes from green to blue, representing the progress of the
navigation. In Fig. III, it is shown that the trained system can
easily recover from a kidnapping event. The robot started
at room 1 and aimed at room 3 as a goal. After reaching
room 3, its goal changed back to room 1, but few timesteps
later it was kidnapped to room 2. It is possible to see that
although it was displaced to another room, the robot drove
successfully to its destination (goal room 1). This result is
consistent across multiple trials and experiments. In 63 routes
that were evaluated, the RC-HC controller could successfully
drive the robot to the correct room in all cases without any
collision. These results are summarized in Table II.

The second environment E2 has 9 rooms and only 4 of
them will be used as starting and goal locations: rooms 1, 3,
7 and 9. In this way, starting in one of the 4 locations, there
are 12 possible shortest (optimal) routes that the robot can
follow. The training datasets are also generated in the same
way as before, but now 500.000 samples represent only 32
routes, which are less examples for training than for environ-

0 1000 2000 3000 4000 5000

1

2

3

4

Timesteps (x 10)

R
oo

m

(a) E1 - current room

0 1000 2000 3000 4000 5000

1

2

3

4

Timesteps (x 10)

R
oo

m

(b) E1 - previous room

0 1000 2000 3000 4000 5000
1
2
3
4
5
6
7
8
9

Timesteps (x 10)

R
oo

m

(c) E2 - current room

0 1000 2000 3000 4000 5000
1
2
3
4
5
6
7
8
9

Timesteps (x 10)

R
oo

m

(d) E2 - previous room

Fig. 5. Performance results of the localization module in environments E1
and E2. Predicted locations are represented by black pointswhereas solid
grey lines are the true robot location. Black crosses represent mistakes.

ment E1. See Fig. 4(b) for an example of robot trajectories
generated with the supervisor controller. The experiments
in environment E2 use the same con�guration stated for
previous experiments except for the following changes. The
number of outputsno of the localization module is 18 (9
previously visited rooms and 9 current rooms). The number
of inputs ni for the navigation reservoir is 30 (18 from the
localization module + 4 goal inputs + 8 distance sensors).

The localization performance on test data for environment
E2 is shown in Fig. 5(c). The system can detect the current
and previously visited room 96.33% and 93.63% of the
time, respectively. An example of successful trajectory in
environment E2 is shown in Fig. 7(a). The robot, driven by
the RC-HC controller, starts at room 1 and reaches room 7
successfully. In 15 out of 23 runs, the robot could perfectly
follow the optimal (shortest) path to its goal. In all 23 runs
it was able to complete the task. Task completion means
that the robot reaches the goal location, being acceptable
that during navigation it takes a wrong decision and then
goes back to the correct optimal path (see Fig. 7(b) for
an example). This also shows the robustness of the RC-HC
controller to noise and unpredictable situations. A summary
of the experimental results is given in Table II.

It is important to observe that most of the errors of the
localization module are made at the transitions between
one room and the following one. These errors represent
a temporary confusion, which is better than a permanent
mistake. Although navigation does not start in intermediate
rooms in environment E2 during testing, it is expected
that the robot can reach any goal location regardless of
its initial position as long as the same sub-route appears
during training. Generalization has been tested to the extent
of the kidnapping event. Future work should con�rm that

TABLE II

PERFORMANCERESULTS IN NUMBER OF TRAJECTORIES

Shortest Path Task completion

Environment E1 63 out of 63 (100%) 100%
Environment E2. 15 out of 23 (65%). 100%

(a) (b)

(c)

Fig. 6. Trajectories for robot driven by the RC-HC controller in environ-
ment E1. (a) Robot starts at room 1 and goes to room 3. (b) Robot starts at
room 3 and goes to room 2. Starting and ending positions are marked with
a circle and a cross, respectively. (c) The robot drives fromroom 1 to goal
room 3. In room 3, its goal changes back to room 1, but it is kidnapped to
room 2 after few timesteps. The trajectory shows that it recovered nicely
from the kidnapping once it drove directly back to room 1.

(a) (b)

Fig. 7. Trajectories for robot driven by the RC-HC controller in envi-
ronment E2. (a) Starting at room 1 and going to target room 7 viarooms
(2 ! 5 ! 8) (optimal path). (b) Starting at room 9 and going to target
room 1 via rooms (8 ! 7 ! 8 ! 5 ! 4) (task completion). Starting and
ending positions are marked with a circle and a cross, respectively.

the trained system can avoid dynamic unseen obstacles
during testing while reaching the desired goal locations.
This generalization capability is expected to work with our
proposed architecture once it has been shown that reservoir
architectures can learn and generalize obstacle avoidance
behaviors [24].

IV. CONCLUSIONS

This work proposes a hierarchical architecture based on a
biologically plausible [26] technique for training Recurrent
Neural Networks, the Reservoir Computing [18] approach.
The RC-HC architecture constructs an internal model of the
environment as it is trained by a series of examples generated
by a supervisor controller (a program or a human supervisor).
In this imitative setting, the architecture learns a cognitive,
implicit map of the environment from a set of 8 low-accuracy
distance sensors, which is used for goal-oriented navigation
in simple and complex simulated environments.

The proposed RC-HC architecture has two reservoir mod-
ules, one for localization and another for navigation. The �rst
module predicts the current room as well as the previously
visited room. It was important to also learn to predict the
previously visited room in order to boost the memory of the
whole navigation system, so that the trained system had some
sense of directionality (which room the robot came from) for
making a correct route to the goal. The navigation module

integrates different sources of information such as from
the distance sensors, the output of the localization module
and the goal location, being able to produce behaviors
which contain reactive (obstacle avoidance) and deliberative
(decision making) components.

The RC training method exploits the capabilities of the
reservoir to project its inputs to a high-dimensional feature
space, where it is easier to separate and classify (dynamic)
patterns existent in the environment. In this way, the reservoir
states (with its rich dynamics) are simply linearly combined
to predict the desired output of the system, be it either the
robot location or the desired motor actuators. This mapping
between reservoir states and the desired output is the only
part necessary to be trained, usually through linear regres-
sion methods. So, avoiding training the recurrent reservoir
itself also avoids problems with convergence of the training
process (as it happens with BPTT method).

The proposed architecture works with distinct timescales
for agile processing of low-level sensory-motor behaviors
as well as for slow processing of higher-level concepts
such as locations. This is achieved by having two reservoirs
working with distinct leak rates, each one responsible for the
respective skill, localization (slow timescale) or navigation
(fast timescale) (relevant works such as [25] also elaborate
on a hierarchy of slow and fast networks for humanoid robot
skill learning).

The current method requires no special landmarks to be
placed in the environment and works with cheap small
mobile robots having few noisy infra-red distance sensors.
Although the environment rooms appear to be different in
shape from each other, it has been show that the local-
ization performance is not deteriorated if the environment
has multiple symmetric rooms [2]. Future directions for
research include the study of integrating rich visual data
(from a camera) for helping navigation in a complex human
environment, probably using bigger robots. In this context,
high-dimensional multimodal input should be pre-processed
and reduced to fewer dimensions before feeding it to a
reservoir. Experiments with the real e-puck robot are also
planned as future work, as a way of con�rming the ro-
bustness of the method with respect to parameter tuning.
This work provides an imitation-based paradigm for learning
autonomous navigation capabilities, but an interesting point
for research is to let the robotic system interact with the
environment and learn in on-line way to map the environment
as well as to reach goal locations based on rewards given by
the environment.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
Dries Van Puymbroeck to the experiments in this paper as
well as the reviewers suggestions and comments for the
improvement of this work. This research is partially funded
by EU FP7 project ORGANIC (project number 231267).

REFERENCES

[1] E. A. Antonelo and B. Schrauwen. Towards autonomous self-
localization of small mobile robots using reservoir computingand slow

feature analysis. InIEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2009.

[2] E. A. Antonelo, B. Schrauwen, and D. Stroobandt. Event detection
and localization for small mobile robots using reservoir computing.
Neural Networks, 21:862–871, 2008.

[3] E. A. Antonelo, B. Schrauwen, and D. Stroobandt. Mobile robot
control in the road sign problem using reservoir computing networks.
In IEEE Int. Conf. on Robotics and Automation (ICRA), 2008.

[4] A. Arleo, F. Smeraldi, and W. Gerstner. Cognitive navigation based
on nonuniform gabor space sampling, unsupervised growing networks,
and reinforcement learning.IEEE Transactions on Neural Networks,
15(3):639–652, May 2004.

[5] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and
mapping (SLAM): Part ii state of the art.Robotics and Automation
Magazine, pages 108–117, September 2006.

[6] V. Braitenberg. Vehicles: Experiments in synthetic psychology. MIT
Press, 1984.

[7] R. Chavarriaga, T. Strsslin, D. Sheynikhovich, and W. Gerstner.
A computational model of parallel navigation systems in rodents.
Neuroinformatics, 3:223–241, 2005.

[8] H. Jaeger. The “echo state” approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148,
German National Research Center for Information Technology,2001.

[9] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication.Science,
308:78–80, April 2 2004.

[10] P. Joshi and W. Maass. Movement generation with circuitsof spiking
neurons.Neural Computation, 17(8):1715–1738, 2005.

[11] W. Maass, T. Natschläger, and H. Markram. Real-time computing
without stable states: A new framework for neural computationbased
on perturbations.Neural Computation, 14(11):2531–2560, 2002.

[12] O. Michel. Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, 2004.

[13] M. Milford, R. Schulz, D. Prasser, G. Wyeth, and J. Wiles. Learning
spatial concepts from RatSLAM representations.Robot. Auton. Syst.,
55(5):403–410, 2007.

[14] F. Mondada. E-puck education robot, September 2007. http://www.e-
puck.org/.

[15] J. O'Keefe and J. Dostrovsky. The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-movingrat. Brain
Research, 34:171–175, 1971.

[16] P. G. Pl̈oger, A. Arghir, T. G̈unther, and R. Hosseiny. Echo state
networks for mobile robot modeling and control. InRoboCup 2003:
Robot Soccer World Cup VII, pages 157–168, 2004.

[17] M. Salmen and P. G. Plöger. Echo state networks used for motor
control. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, pages 1953–1958, 2005.

[18] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview
of reservoir computing: theory, applications and implementations. In
Proceedings of the European Symposium on Arti�cal Neural Networks
(ESANN), 2007.

[19] D. Silver, J. A. D. Bagnell, and A. T. Stentz. Perceptualinterpretation
for autonomous navigation through dynamic imitation learning. In
International Symposium of Robotics Research, August 2009.

[20] T. Stroesslin, D. Sheynikhovich, R. Chavarriaga, and W. Gerstner.
Robust self-localisation and navigation based on hippocampal place
cells. Neural Networks, 18(9):1125–1140, 2005.

[21] J. Tani. On the interactions between top-down anticipation and bottom-
up regression.Frontiers in Neurorobotics, 1, 2007.

[22] T. van der Zant, V. Becanovic, K. Ishii, H. Kobialka, andP. Pl̈oger.
Finding good echo state networks to control an underwater robot using
evolutionary computations. InProceedings of the 5th IFAC symposium
on Intelligent Autonomous Vehicles (IAV04), 2004.

[23] D. Verstraeten, B. Schrauwen, M. D'Haene, and D. Stroobandt. A uni-
fying comparison of reservoir computing methods.Neural Networks,
20:391–403, 2007.

[24] T. Waegeman, E. Antonelo, F. wyffels, and B. Schrauwen. Modular
reservoir computing networks for imitation learning of multiple robot
behaviors. In Proc. of the IEEE Int. Symp. on Computational
Intelligence in Robotics and Automation (CIRA), 2009.

[25] Y. Yamashita and J. Tani. Emergence of functional hierarchy in a mul-
tiple timescale neural network model: A humanoid robot experiment.
PLoS Comput Biol, 4(11):e1000220, 11 2008.

[26] T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine.
Neural Networks, 20:290–297, 2007.

