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Abstract—In this work we propose a hierarchical architec- in between the real-world robotic problems and biologicall
ture which constructs internal models of a robot environment inspired models. In this context, we employ a biologically

for goal-oriented navigation by an imitation leaming process. |5 sihle method called Reservoir Computing (RC) [23] to
The proposed architecture is based on the Reservoir Computing trai bil bot troller i ised RC
paradigm for training Recurrent Neural Networks (RNN). It is rain a mobile robot controfler in a supervised way.

composed of two randomly generated RNNs (called reservoirs), IS @ unifying term for techniques which efciently train
one for modeling the localization capability and one for learning Recurrent Neural Networks (RNNs). They are know as Echo

the navigation skill. T_he Iocal_iz_ation module is trained to detect State Network (ESN) [9] for analog neurons or Liquid State
the current and previously visited robot rooms based only on Machines (LSM) [11] for spiking neurons. In these systems,

8 noisy infra-red distance sensors. These predictions together . - .
with distance sensors and the desired goal location are used by the RNN is areservoir of randomly generated nodes which

the navigation network to actually steer the robot through the = Projects the input to a high-dimensional space (acting dike
environment in a goal-oriented manner. The training of this non-linear kernel). The reservoir is not trained at all, duoly
architecture is performed in a supervised way (with examples g readout output layer, usually by linear regression method
of trajectories created by a supervisor) using linear regression Fig. 1 shows an example of a RC network.

on the reservoir states. So, the reservoir acts as a temporal . . - .

kernel projecting the inputs to a rich feature space, whose This work pr_oposes a hierarchical af?“'t?cmfe composed
states are linearly combined to generate the desired outputs. Of two reservoir modules, one for localization and another
Experimental results on a simulated robot show that the trained  for navigation. The localization reservoir receives infsatm
system can localize itself within both simple and large unknown only 8 low-accuracy distance sensors and determines the
environments and navigate successfully to desired goals. current and previously visited robot room. The mapping

. INTRODUCTION between reservoir states to the predicted rooms is learned

Autonomous robots should be able to learn their abilitieg"n t‘z sup(ra]r\i/éserd dwagvi];ronTn erﬁarrnples of LOdb?t trrna}jnectotrles
through interaction with the environment. Learning its ow € considered environment. In a second learning stage,

: L S he navigation reservoir is trained with several exampl
internal rules for sensory-motor coupling in close intémac e navigation reservoir is trained with several examples

with the environment represents a higher degree of autonorﬂ]c routes from a source location to a goal location, using

for a robot. This also implies adaptation and robustness fgputs from the localization reservoir (predicted locati
noise and unpredictable events the distance sensors and the desired goal location (given as

Standard models of deliberative systems for autonomo#put to the system). So, this navigation module integrates

navigation rely on a prede ned set of rules for path planning lfferent type§ of input and can smultaneously learn neac't
A lot of design effort has to be put in creating a map of th obsta_cle avoidance) an_d deliberative (sequence of desjsi .
environment and modeling all possible events and situstio ehaviors _(also shown in [3] for delayed response tasks like
during robot navigation. It can also be very computatiqnallt € r_oa}d sign problemy. . . .

expensive. The probabilistic SLAM approach represents the It is important to see that the internal reservoir memory is
state-of-the-art in simultaneous localization and mag{) essential for learning an internal model of the environment
but it lacks in adaptation and learning capabilities andaligu and of the robot task. The recurrent reservoir has stateshwhi

requires fully equipped robot platforms with expensiveetas re ect the recet;llt hletOfy otf)_ln_puts, rgp;eselz_ntmg _‘i‘hs?;fm ¢
scanners for environment mapping. Furthermore, it usual emory capable of combining and dealing wi feren

has rather large computational requirements. ources of info_rmation. Its inherent ce}pability.for moqgli
Recent adaptive navigation models have been proposI;tecfnporaI non-linear systems makes it very interesting for

in the literature which either try to solve challenging real constr_uctlng internal mode_ls. As_argued by J. Tani [Z_l]'
ehavior-based systems without internal models are blind.

world problems [13], [19] or are oriented towards modelinag b bini . i d loriented
an animal's capability for spatial navigation [4], [20],]{7 0, Dy combining reservoir computing and goal-orniente
gwgatmn, we aim at creating a unifying and ef cient

Machine learning techniques are used in both contexts af

more biologically-inspired methods can be preferred ddpenmeﬁho.d for |rr(1j|t$t|0n O'Ie""l”?'”g. c{: del:beradtlvle and reactive
ing on the task and the context. This work could be situate%e aviors .(an IS underlying Internal mode S).'
The ability to learn an implicit map of the environment can
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x(t) L
u(t) reservoir y(t) reservoir is given by:

inputs outputs
X(t+1) = F((L X+ (WinU(t)+ W resx (t)+ W 5,));
1)
where: u(t) represents the input at timg x(t) is the
reservoir state; is the leak rate; and () = tanh() is
the hyperbolic tangent activation functiow i, andW [55.
are the weight matrices from input and bias to reservoir,
respectively andV s represents the recurrent connections
Fig. 1. Reservoir Computing network. The reservoir functidike a between internal nodes of the_ reservoir. Th_e initial state i
temporal kernel which projects the input to a rich featurecep&olid lines  X(0) = 0. A standard reservoir equation (without the leak
represent xed connections. Dashed lines de ne connestiwhich should rate) is found when =1.
be learned. The output of the RC network(t) is given by a linear

approach is used in this work where distinct outputs in théombination of the reservoir states plus a bias:

!ocallzatloq module are used tol enche specic Iocgtlons YE+1) = Woux(t+1)+ WOU: @)

in the environment, given low dimensional sensory input,

resembling hippocampal place cells of rodents. Although The non-trainable weight®/ ;, and W s are randomly

our model does not use any form of path integration (e.ginitialized. Each element of the connection matwik,es is

odometry), the reservoir provides a short-term memory afrawn from a normal distribution with zero mean and unit

previous inputs, making it possible that the robot mairstainvariance. This matrix is rescaled so that the reservoir has

an estimate of its current location for additional timestepthe echo state property [8], that is, its spectral rafliigy j

even in the absence of sensory input. (the largest absolute eigenvalue) of the linearized syssem
Relevant research in learning the localization capabilitgmaller than one [8]. This means that the reservoir should

for small mobile robots using RC can be found in [2] in ahave a fading memory such that if all inputs are zero, the

supervised learning approach and in [1] in an unsupervisedservoir states also approach zero within some time period

way. In these context, the current work is the rst to intégra For most applications, the best performance is attaineu avit

localization and navigation using the Reservoir Computingeservoir that operates at the edge of stabjlityax j = 0:98.

paradigm. Several recent works have been using RC irhe initialization of the reservoir parameters are given in

robotics: in [16] for mobile robot modeling and control, inSection Ill.

[10] for movement generation, in [17] for motor control, and Next, consider the following notatiom; is the number of

in [22] for underwater robot control. inputs; n, is the number of neurons in the reservaig, is
The advantages of the current approach are three-folie number of outputs)s is the number of samples.

no special environment landmarks are required; it works The training of the output layer consists of nding the

for small mobile robots having few low-accuracy distancaveightsW o,; which minimizes the sum of squared errors

sensors; and deliberative and reactive navigation compo- Xs

nents are learned in an imitation-based way with the same () 9(@)?%;

hierarchical architecture. We also show in this paper that =1

_robot kldr_lapplng can eaglly k_)e overcome even if th_e ro_b%ty the Least Squares Method:

is not trained with this situation, showing a generalizatio

capability of the proposed system. MW o = Y (3)
The experiments are accomplish_ed with a simulation Wour = (M>M) IM>¥: (4)

model of the e-puck robot extended with longer-range ([5cm-

80cmy)) infra-red sensors in the Webots environment. It iwhere: M is the matrix of sizens (n, + 1) with the

shown that proposed system can learn with examples generated reservoir states collected row-wise where #te la

drive a robot to a desired goal location in simple and biggezolumn of M is composed of 1's (representing a bias).

(9 rooms) environments using only 8 low-accuracy sensoi&he desired outputs (e.g., location or motor actuators) are

and the goal location as input. This paper is organized @sllected row-wise into a matri¥ .

follows. In Section I, reservoir computing, the robot mbde Note that the other matrice¥res; W in; W j;,5) @re not

and the hierarchical model are described. Experiments atrdined at all. The last two matrices (connections from

its associated results are presented in Section lll. Binallinput/bias to reservoir) are con gured in Section Ill. The

conclusions and future work are given in Section V. learning of the RC network is a fast process without lo-
cal minima, which is not the case for algorithms such as
[Il. METHODS BackPropagation-Through-Time (BPTT).

The supervised learning procedure consists of two stages
as follows. First, it is necessary to generate several elemp

The RC model we use is based on the Echo State Netwook robot trajectories from a source location to a goal larati
(ESN) approach [8]. The state update equation for thgsee Section II-B). All required data are recorded during

A. Reservoir Computing



________________________

this stage such as the distance sensors and the goal location | current previous
(input) and the robot location and desired motor actuators | ocation
(output). The second stage involves the training of the iz i
RC networks with the recorded data (see Section II-C). learning]Nks
Afterwards, the trained system can be used to drive the robot
to speci c target locations given as input.

navigation
reservoir kernel

localization
reservoir kernel

fast timescale
slow timescale
B. Robot Model and Dataset Generation

The robot model used in the following experiments is V.
the simulated e-puck robot [14] extended with 8 infra-red 00 ~ O] |[000] 00

sensors which can measure distances in the range [5-80] distance sensors goal location 1 ators

cm. We use the Webots simulation environment [12] for data

- . . . . Fig. 2. Hierarchical architecture with localization andvigation modules.
generation and navigation experiments, prowdmg phywa The navigation and localization reservoirs are randomlyegeied recurrent

realistic simulations (the simulator detects collisionsda networks which are not trained, but left xed. Trainable campnts are
simulates physical properties of objects, such as the mag89wn in shaded rectangles. The sensory input feeds bathvoirs, being
the velocity, the inertia, the friction, the spring and damgp 00 e e on moduie dhe sarget
constants, etc.). A simulated timestep in Webots takes 32 mication to determine the desired motor actuators.

The original simulation model of the e-puck has a 5.20 cm o . .
diameter (10 cm when modi ed with the extra turret for thel@yer of the localization module (see Fig. 2) creates a apati
infra-red sensors) and its actuators are 2 stepper motors./FPresentation of the environment which is comparable to
the simulation, the robot wheels have a radius of 2 cm. the representation provided by the place cells found in the

While the robot navigates in the Webots simulation enbippocampus of rats (areas CAl and CA3, [15]). These place

vironment, a dataset (with sensors, actuators, and lowtio C!IS increase activity whenever the rat (robot) is in a spec
is recorded into a Matlab environment (communication imf€9ion of its environment (which de nes the place eld of
plemented with TCP/IP sockets). The robot controller used® cel)- _ _

to generate these training datasets is composed of a simple "€ Navigation reservoir accounts for steering the robot
linear obstacle avoidance algorithm (the Braitenbergatehi 91Ven several sources of information. It receives inputrfro
[6]) which is steered by a higher level planner (e.g., he robot dlstgnce sensors so that_|t can efciently avoid
program or a human supervisor). The speed (steps/secondfgftacles and input from the localization module and thé goa
the robot is variable (the maximum speed is 1000 steps p@cation for decision making (planning). All these inpute a
second). In this work, the actuator is limited to the intérvalntegrated in ondast reactingreservoir (with a high leak

[0, 300] steps/s (or [0, 3.77] cm/s). rate) whose states are linearly combined to set the motor
' ’ actuators for the left and right wheels.
C. Hierarchical Architecture The learning process is divided in two stages. First,

The proposed architecture is based on the followin'® Iocallization module is trained with gxampleg .of robot
principles: autonomous navigation is achieved by a procef@ectories to detect the current and previously visitbt
of imitation leaning which trains the proposed architeetur™©0M using the controller described in last section. After
with examples of correct goal-oriented trajectories; aoalg IS, We train the navigation module with new examples of
oriented navigation should be achieved by learning a dpati@P0t trajectories, but now using the prediction of thertea
representation of the environment by the robot's own smsopcal'zat'oh .module as input. o
(embodied cognition). The second point implies that the BY rewriting equations (1) and (2) for the localization
system does not know the map of the environment a priofiiodule, we get:

The reservoir arch.ltecture apd trammg procedure follbw't X+ = f(Q 06 )X (1) + 100 (W 1% gy (£)+
Reservoir Computing paradigm, which has been associated oc o5 x
to cerebellar functioning in real brains [26]. We will catii$ WiresX (1) + W pias )
architecture from now on as Reservoir Computing Hierarchiy°®(t + 1) = g(W S9x'°¢(t + 1) + W ut.cloc (5)
cal Controller (RC-HC). yPoS(t+1) = g(W mcxmc(t 1)+ W giuats,ploc); 6)

The RC-HC architecture is composed of two reservoirs:
the localization reservoir and the navigation reservo@e(s wherey coc andypoc are vectors of size, representing the
Fig. 2). The localization module predicts the current robopredicted current and previous robot locations, respelgtiv
location as well as the previously visited robot locatiovegi  n is the number of locations or rooms in the environment
only 8 distance sensors as input. The reservoir projects thed g(x) is a winner-take-all function which gives +1 for
robot's sensors to a high-dimensional space whose statdé® highest input and -1 otherwise. The other parameters and
are linearly combined to detect the robot location [2]. Thiyvariables have the same meaning as the ones in Section II-
mapping is learned with linear regression (see Section IA, but have new subscripts for identifying the localization
A). This reservoir has a low leak rate which provides reservoir.
more memory to hold information on past inputs. The output Analogously, the equations for the navigation module are



TABLE |
PARAMETER CONFIGURATION FOREXPERIMENT IN ENVIRONMENT E1

Reservoir n; No Nr de W i’ﬁs
Localization 8 8 400 0.01 10 f 1(30%);0(70%)g
Navigation 19 2 400 1 5 f 1(50%); 0(50%)g

an initial room to a target room (see Fig. 4(a) for an
example) - there are 6 possible routes in environment E1.
The datasets were downsampled by a factordof= 10
andd; = 5 respectively (values empirically chosen to give
Fig. 3. Webots environments used for experiments. (a) Enwieont (165 best performance), resulting in two datasets of 50.000 and
cm x 150 cm) with 3 goal rooms and a connecting corridor. (b) &arg 20 000 samples, respectively. As the these sampling rates
environment (300 cm x 300 cm) with 9 rooms (goal locations are, T, 3 diff tf h oth . Is f the | lizati
or 9). Dashed lines represent boundary limits between rooms. are ai gren rom each otner, signals irom tnhe locallzalio
reservoir {coc and ypoc) are upsampled to the same
0.15, 0.15 and 0.7 (0.25, 0.25 and 0.5), respectively, fer th
localization reservoir (navigation reservoir). Thesetisgs
as follows: The localization performance on test data (consisting of
50.000 samples downsampled to 5.000 timesteps) is shown
X" (t + 1) = f ((1 nav)xnav (t) +  nav (W ir;]av U multi (t)

sampling rate of the navigation reservoir before they are
for the connections are not crucial for the experiments in
in Fig. 5. It can correctly detect the current robot room 97.5

(a) E1 (b) E2

used as input to that module. A summary of the parameter
con guration is given in Table I. Some of these parameters
are described in Section II-A. In this table, the connetion
in WS are initialized to +1, -1 and 0 with probabilities
(a) E1 (b) E2 this work (they are usually chosen to be sparse). Parameters
Fig. 4. Samples of robot trajectories used as training exaiole the andd. were found by a grid search in the case of the
ig. 4. S j ies us ining ex i : . .. .
RC-HC controller. (a) Trajectory in E1. (b) Trajectory in £2 localization moqlule_ (ofine testlng),_ and emplrlcally ifme
case of the navigation module (online testing).

+ W2 (t) + W 5); of the time and the previously visited room 97.8 % of the
Yy (t+1) = g(W QY X" (t+1)+ W putnav (7) time (this result is consistent if different randomly gener

ated reservoirs are considered). Examples of the suctessfu
wherey s is a vector with the speeds for the left and rightyajectories generated by the RC-HC system after training
wheels of the robot; and™" (t) is a concatenated input are shown in Fig. 6. The robot starts in one of the rooms
vector consisting of the distance sensors, the current afi§bsition indicated by a circle) and navigates to the goal

previous predicted locations, and the goal location room (given as input) with the end position represented by
a™it ey = 1uT o (v v (OuT (1T a small cross. The trajectory is plotted such that its color
(©) = [Udist (Y ctoc (1Y proc (1) Ugoar (V] changes from green to blue, representing the progress of the
navigation. In Fig. 111, it is shown that the trained systeamc

The weight matrice®V in Equations (5), (6) and (7) are easily recover from a kidnapping event. The robot started
trained using linear regression as explained in Sectidh II- at room 1 and aimed at room 3 as a goal. After reaching
All other weight matrices (connecting to the reservoir) areoom 3, its goal changed back to room 1, but few timesteps
randomly generated at the beginning of the experiment. later it was kidnapped to room 2. It is possible to see that

although it was displaced to another room, the robot drove
. EXPERIMENTAL RESULTS successfully to its destination (goal room 1). This ressilt i

We have evaluated the proposed RC-HC hierarchical atonsistent across multiple trials and experiments. In 682
chitecture in two environments. Environment E1 is composeithat were evaluated, the RC-HC controller could succdgsful
of three rooms connected by a central corridor (see Fig. 3jrive the robot to the correct room in all cases without any
A second, larger environment E2 is made of 9 rooms witkollision. These results are summarized in Table II.
open doors connecting them. For the rst environment, The second environment E2 has 9 rooms and only 4 of
there are two training datasets, one consisting of 500.0@8em will be used as starting and goal locations: rooms 1, 3,
samples (4 hours and a half of simulation time) for training and 9. In this way, starting in one of the 4 locations, there
the localization module in a rst step and the other onare 12 possible shortest (optimal) routes that the robot can
consisting of 100.000 samples for training the navigatiofollow. The training datasets are also generated in the same
reservoir in a second step. These training datasets contaimy as before, but now 500.000 samples represent only 32
examples of trajectories of a robot continuously going fromoutes, which are less examples for training than for enviro
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1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 Fig. 6. Trajectories for robot driven by the RC-HC contrplie environ-

Timesteps (x 10) Timesteps (x 10) ment E1. (a) Robot starts at room 1 and goes to room 3. (b) Rédds sit

(c) E2 - current room (d) E2 - previous room room 3 and goes to room 2. Starting and ending positions arkemavith

a circle and a cross, respectively. (c) The robot drives froom 1 to goal

room 3. In room 3, its goal changes back to room 1, but it is &xped to

room 2 after few timesteps. The trajectory shows that it reced nicely
from the kidnapping once it drove directly back to room 1.

o
o

Fig. 5. Performance results of the localization module in mmments E1
and E2. Predicted locations are represented by black painéseas solid
grey lines are the true robot location. Black crosses reptesiistakes.

ment E1. See Fig. 4(b) for an example of robot trajectories
generated with the supervisor controller. The experiments
in environment E2 use the same con guration stated for
previous experiments except for the following changes. The
number of outputs, of the localization module is 18 (9
previously visited rooms and 9 current rooms). The number
of inputsn; for the navigation reservoir is 30 (18 from the
localization module + 4 goal inputs + 8 distance sensors).
The localization performance on test data for environment @ ®)
E2 is shown in Fig. 5(c). The system can detect the curreply. 7. Trajectories for robot driven by the RC-HC controlla envi-
and previously visited room 96.33% and 93.63% of théonlmegtlEZQ(a) St_taftilng ﬁtl;] fOObm slta?'d 90it”9 to tagfgetdfoom W‘?@?S t
time, respectively. An example of successful trajectory iff ;... rgo(r?gé”;a path). { )5!au)"%:skrggmpleﬁgn).gg't';?ﬂn% o
environment E2 is shown in Fig. 7(a). The robot, driven bynding positions are marked with a circle and a cross, reisphct

the RC-HC controller, starts at room 1 and reaches room 7 ) . . |
successfully. In 15 out of 23 runs, the robot could perfectiji€ trained system can avoid dynamic unseen obstacles

follow the optimal (shortest) path to its goal. In all 23 runsduring testing while reaching the desired goal locations.

it was able to complete the task. Task completion mear@is generalization capability is expected to work with our

that the robot reaches the goal location, being acceptak‘HéOposed architecture once it has been shown that reservoir

that during navigation it takes a wrong decision and theﬁrchitectures can learn and generalize obstacle avoidance
goes back to the correct optimal path (see Fig. 7(b) fdrehaviors [24].
an example). This also shows the robustness of the RC-HC IV. CONCLUSIONS

controller to noise and unpredictable situations. A sunymar This work proposes a hierarchical architecture based on a

of th_e gxperlmental results is given in Table Il. biologically plausible [26] technique for training Recaint
It is important to observe that most of the errors of thel‘e\l

) ; V\,’h'Ch is better than a permaney a supervisor controller (a program or a human supervisor)
mistake. Although navigation does not start in intermetiat; | s imitative setting, the architecture learns a cdgeit
rooms in environment E2 during testing, it is expectedjicit map of the environment from a set of 8 low-accuracy
.that. Fhe robqt_ can reach any goal location regardiess sttance sensors, which is used for goal-oriented navigati
its initial position as long as the same sub-route appeajs simple and complex simulated environments.
during training. Generalization has been tested to thenéexte The proposed RC-HC architecture has two reservoir mod-
of the kidnapping event. Future work should conrm that o5 one for localization and another for navigation. Thet
TABLE I module predicts the current room as well as the previously
PERFORMANCERESULTS INNUMBER OF TRAJECTORIES visited room. It was important to also learn to predict the
previously visited room in order to boost the memory of the
whole navigation system, so that the trained system had some
Em:gmgm E; 613500uutt00ff6233((1605%;43) 1883’ sense of directionality (which room the robot came from) for
i 0): ° making a correct route to the goal. The navigation module

Shortest Path  Task completion




integrates different sources of information such as from
the distance sensors, the output of the localization modul
and the goal location, being able to produce behavior
which contain reactive (obstacle avoidance) and deliberat
(decision making) components.

The RC training method exploits the capabilities of the
reservoir to project its inputs to a high-dimensional featu [4]
space, where it is easier to separate and classify (dynamic)
patterns existent in the environment. In this way, the reser
states (with its rich dynamics) are simply linearly comloine [5]
to predict the desired output of the system, be it either the
robot location or the desired motor actuators. This mappingg
between reservoir states and the desired output is the only
part necessary to be trained, usually through linear regred’]
sion methods. So, avoiding training the recurrent reservoi
itself also avoids problems with convergence of the tranin [g]
process (as it happens with BPTT method).

The proposed architecture works with distinct timescalesg
for agile processing of low-level sensory-motor behaviors
as well as for slow processing of higher-level concepts
such as locations. This is achieved by having two reservoirs
working with distinct leak rates, each one responsibleffer t [11]
respective skill, localizations{ow timescale) or navigation
(fast timescale) (relevant works such as [25] also elaboratg,
on a hierarchy of slow and fast networks for humanoid robot
skill learning). (13]

The current method requires no special landmarks to be
placed in the environment and works with cheap smaljt4]
mobile robots having few noisy infra-red distance sensors.
Although the environment rooms appear to be different find
shape from each other, it has been show that the local-
ization performance is not deteriorated if the environmerit6l
has multiple symmetric rooms [2]. Future directions for
research include the study of integrating rich visual datg7]
(from a camera) for helping navigation in a complex human
environment, probably using bigger robots. In this context g
high-dimensional multimodal input should be pre-procdsse
and reduced to fewer dimensions before feeding it to a
reservoir. Experiments with the real e-puck robot are als[qg]
planned as future work, as a way of conrming the ro-
bustness of the method with respect to parameter tunina.
This work provides an imitation-based paradigm for leagnin ol
autonomous navigation capabilities, but an interestingtpo
for research is to let the robotic system interact with th&1l
environment and learn in on-line way to map the environmerg2

2]

K]

as well as to reach goal locations based on rewards given by
the environment.
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