
Modular Reservoir Computing Networks for Imitation Learning of
Multiple Robot Behaviors

Tim Waegeman, Eric Antonelo, Francis wyffels and Benjamin Schrauwen*

Abstract—Autonomous mobile robots must accomplish tasks
in unknown and noisy environments. In this context, learning
robot behaviors in an imitation based approach would be
desirable in the perspective of service robotics as well as of
learning robots. In this work, we use Reservoir Computing
(RC) for learning robot behaviors by demonstration. In RC,
a randomly generated recurrent neural network, the reservoir,
projects the input to a dynamic temporal space. The reservoir
states are mapped into a readout output layer which is the
solely part being trained using standard linear regression. In
this paper, we use a two layered modular structure, where the
first layer comprises two RC networks, each one for learning
primitive behaviors, namely, obstacle avoidance and target
seeking. The second layer is composed of one RC network
for behavior combination and coordination. The hierarchical
RC network learns by examples given by simple controllers
which implement the primitive behaviors. We use a simulation
model of the e-puck robot which has distance sensors and a
camera that serves as input for our system. The experiments
show that, after training, the robot learns to coordinate the
Goal Seeking (GS) and the Object Avoidance (OA) behaviors
in unknown environments, being able to capture targets and
navigate efficiently.

I. INTRODUCTION
Autonomous mobile robots should be able to avoid obsta-

cles while performing tasks such as target seeking, battery
recharging, etc. These robots must achieve their goals in
an unknown and unpredictable environment, representing
constraints that are hard to fullfill in a traditional way
(by modeling and manually programming all the possible
events). In this context, the learning capability for a robot
can be very relevant for accomplishing desired tasks.
Learning by demonstration can be very interesting if

implemented correctly. The idea is that the robot can learn its
task just by showing some examples of a behavior or ways of
accomplishing a task. These examples are generated through
a human tutor or a teacher controller. Feature extraction and
high dimensionality are an important issue here. Extracting
the correct features from a camera for modeling actions or
behaviors is not a simple task. In this work, instead of using
feature extraction methods, we use a learning architecture
which can be used with the raw input data. In particular, we
use Recurrent Neural Networks (RNNs) that can be trained
efficiently under the paradigm of Reservoir Computing (RC)
[16].
RNNs are usually very difficult to train with techniques

such as Backpropagation-through-time (BPTT). The recently

*Department of Electronics and Information Systems
Ghent University, Ghent Belgium
Tim.Waegeman@UGent.be, Eric.Antonelo@UGent.be,
Francis.wyffels@UGent.be and Benjamin.Schrauwen@UGent.be

introduced technique for efficient and fast learning of RNNs,
Reservoir Computing [16], was first introduced under the
term of Echo State Networks (ESN) [9]. In RC, the output
is generated by an instantaneous and linear memoryless map-
ping of a large untrained dynamical system (the reservoir)
which is excited with one or more input signals. The reservoir
is a randomly connected recurrent neural network whose
connection weights are scaled so that it operates at the edge
of stability, thus having a fading memory [10].
RC has proven its qualities in a broad range of applications

such as speech recognition [14], time series generation [11]
and in a wide range of robot applications. Complex event
detection and robot localization for small mobile robots are
tackled in [3] by only using few short-range distance sensors.
In [2], Reservoir Computing is used for several robotics tasks
such as prediction of robot position, learning of maps for
unstructured environments as well as generation of robot
paths in these environments. Robotic tasks which require
memory on previous stimuli are learned with Reservoir
Computing in [4], providing an imitation learning approach
for learning delayed-response tasks like the T-maze task [4].
In [8] ESN are used to learn robot navigation behavior where
the performance is comparable and even better than other
algorithms from the literature.
In [5], imitation learning with RC is used for learning

conflicting navigation behaviors (target seeking and explo-
ration behavior) for mobile robots by employing a single
RC Network. The RC network is stimulated by distance
sensors and the switching between the learned behaviors
is implemented by an extra input which is able to change
the dynamics of the reservoir, and in this way, change the
behavior of the system. The current work is an extension
of [5] using a hierarchy of RC Networks. Our architecture
is a two-layered system in which primitive behaviors are
learned in the first layer. The coordination and combination
is modeled in the second layer and does not depend on an
extra input as in [5], but is based on visual sensor information
(which can detect events from the environment).
In comparison to [5], the innovation of this approach

is four-fold: we use a Webots simulation model of the e-
puck robot which uses only 8 distance sensors; our model
integrates infra-red sensors with camera input (multi-modal
achitecture); it doesn’t model explicitly switching through
an extra input but uses the available sensor information to
detect events; complex behavior emerges from combination
of primitive modular behaviors.
This modular approach can, in principle, be used for learn-

ing multiple behaviors. As the memory of a single reservoir

...

Inputs OutputsReservoir

Fig. 1. Description of a Reservoir Computing network. Dashed arrows are
the connections which can be trained. Solid arrows are fixed.

is limited, by using a modular RC network architecture, it
can learn a higher number of robot behaviors. In addition,
this architecture can handle more complex behaviors which
can emerge from the imitation learning process.
Before we start describing our system and experiments we

will start by a short introduction of Reservoir Computing
which is the core of our technique for modeling multiple
robot behaviors by imitation learning. After this, we will
give a brief description of our experimental setup and the
used robot model. Next, we will describe a technique to
learn primitive robot behaviors such as Obstacle Avoidance
(OA) and Goal Seeking (GS) by imitation. We also show
that the system generalizes the learned primitive robot be-
haviors in unknown environments. After that, we describe
how the primitive behaviors can be combined in a modular
architecture with two layers. Finally we will compare the
resulting behavior with a known method for combining
different behaviors.

II. RESERVOIR COMPUTING
The RC network model used in this paper follows the Echo

State Network (ESN) approach [9]. An ESN is composed of
a discrete-time recurrent neural network (i.e., the reservoir)
and a linear readout output layer which maps the reservoir
states to the desired output. A schematic overview of this is
given in Fig. 1. The neuron states and the readout output are
updated as follows:

x[k+1] = tanh(Wr
rx[k]+Wr

iu[k]+Wr
b) (1)

y[k+1] = Wo
r x[k+1]+Wo

b, (2)

where u[k] denotes the input at time k, x[k] represents the
reservoir state and y[t] is the output. The weight matrices
W·

· represent the connections between the nodes of the
network (where r, i,o,b denotes reservoir, input,out put, and
bias, respectively). All weight matrices to the reservoir
(denoted as Wr

·) are initialized randomly, while all con-
nections to the output (denoted as Wo

·) are trained using
standard linear regression techniques. For construction of the
weight matrix Wr

r, weights are drawn independently from
a normal distribution with zero mean and unit variance.
After construction, the matrix Wr

r is rescaled such that the
largest absolute eigenvalue (spectral radius) is smaller than
one, so that the system is at the edge of stability and has a

fading memory [9]. In this work we always use a spectral
radius equal to 0.9 which is an arbitrarily chosen value (the
optimization of the spectral radius for each experiment was
not necessary because the changes in performance were not
very significant).
For many applications, the dynamics of the reservoir need

to be slowed down to match the intrinsic timescale of the
input data. The system’s dynamics can effectively be tuned
by using leaky integrator neurons [9] as follows:

x[k+1] =I(1−)x[k]+
tanh(Wr

rx[k]+Wr
iu[k]+Wr

b)
(3)

where equation (1) is slightly changed by adding an ad-
ditional term which takes a fraction of the the previous
state x[k] into account. This term is called the leak rate.
Further investigation about timescales in reservoirs and leaky
integrator neurons can be found in [15], [12].
The imitation learning process uses training data which
consists of both input (robot sensors) and output (actuators),
which is gathered from teacher controllers. Training is per-
formed by using linear regression on the reservoir states.
For this, the reservoir is driven by an input sequence (the
gathered robot sensors) which yields a sequence of neuron
states using equation (3) and a sequence of outputs (the
generated actuator signals) using equation (2). Next, the
output connections Wo

· are trained such that the generated
output signals correspond to the control signals for the
actuators from the teacher controller. We determine the
output connections by minimizing the least square error J(w)
according to the following equation:

J(w) = (Mw−T)T (Mw−T), (4)

where matrixM consists of a concatenation of all inputs u[k],
reservoir states x[k] and outputs y[k−1]. Matrix T consists
of all desired outputs. By minimizing J(w) we can determine
the output connections w.

III. ROBOT MODEL AND DATASET GENERATION
We use the Webots model of the e-puck1 robot for our

experiments. This model is extended with 8 new sensors
which can measure over a larger distance (between 4 and 80
cm) than the original light intensity based distance sensors
(Fig. 3). These sensors are positioned around the e-puck
robot in a octagon and are modeled as single ray sensors
with no noise. The model returns values between 0 and 255
(D) for the distance sensors, which we normalize:

Dnorm =
D−µd

d
, (5)

where µd , is the average for each distance sensor, over all
samples of the known dataset. The denominator in equation
(5) is the standard deviation d . The e-puck is equipped
with a camera which has a horizontal angle of view of
99.5 degrees. We preprocess the camera values to reduce
the amount of information we feed to the reservoir. First
1http://www.e-puck.org

we reduce the amount of pixels to a rectangular area of
4× 120 as shown in Fig. 2. Then we divide the horizontal
area in 8 blocks, each of 4× 15 pixels. We further reduce
the image to an image of 1×8 by taking the average RGB-
values over each block. If the averaged RGB-values are
above a certain threshold for a red colored object we give
this block the value one, and zero otherwise. Basically we
converted our camera to a color sensor which is sensitive
for red objects. For our experiments we use the Webots
simulation environment in combination with a Reservoir
Computing MatLab toolbox created at our research group.
This toolbox2 gives the experimenter the ability to quickly
set up experiments. To reduce the time of every experiment
we run the simulation at 5 to 15 times faster than real
time, depending on the performance of the system used for
the experiments. Because of our configuration concerning
the camera image, we do not have a fixed synchronization
between Webots and Matlab. This means that the amount
of samples per second depends on the processor load of
the system, although the effect on the resulting behaviors
is unnoticeable.

IV. LEARNING PRIMITIVE BEHAVIORS
In this section, we will elaborate on the training of RC

networks for two primitive behaviors. The first behavior is
Obstacle Avoidance (OA) and uses only the distance sensors
as input, whereas the second behavior is “Goal Seeking”
(GS) which drives the robot towards the target. The last
behavior uses only camera inputs. We will describe the
controller of each primitive behavior and give more details
about the RC networks used for learning. Finally we will
show the generalization capabilities of each behavior, by
putting the e-puck robot in a different environment during
testing, depicted in Fig. 3 (right).

A. Obstacle Avoidance behavior
We use a controller to generate the OA behavior which

uses a variant of the Braitenberg algorithm [6]. In Figure 4(a)

2RC toolbox: http://reslab.elis.ugent.be/RCtoolbox

0 1 1 1 0 0 0 0

Original image

4x120 Selection

Divide in 4x8 blocks

Average per block

Convert with threshold

Fig. 2. The different steps of the camera image preprocessing is shown
on the right together with an example of every step on the left.

Fig. 3. Robot model (left) and simulation environment (right) with a red
object (target) at the upper-right corner and the robot in the middle.

we give an example of a trajectory generated by the controller
in the training environment used for generating the dataset.
Similar work in [7] uses a Liquid State Machines [13]
(counterpart of Echo State Networks for Spiking Neural
Networks) to imitate Braitenberg vehicles. The Braitenberg
controller generates examples of trajectories which are used
to train the OA RC network.
To learn this behavior we use a reservoir with 300 neurons,

although less is also possible because of the linear char-
acteristics of the Braitenberg algorithm. As we mentioned
shortly, we use the 8 distance sensors as input signals, which
are normalized between −1 and 1. The readout layer has 2
output units which corresponds to the left and right wheel
speed. The connection matrix from input to the reservoir
(Wr

i) has elements which are 0 with a probability of 0.4. The
other elements are −0.1 or 0.1 with equal probability. The
reservoir has a spectral radius of 0.9, a connection fraction
of 0.9 and a leak rate of 0.5.
During training of the OA behavior, we insert a cube in

the training environment and we move it around at times
chosen by the experimenter as illustrated in Fig. 4(a). The
motivation for this is that the system should have rich enough
information to learn a behavior that is able to generalize.
After training, the system (RC network) produces the same

behavior as the controller and is able to generalize as shown
in Fig. 5(a). This means that the e-puck acts exactly the
same way as the controller even in a different environment,
independent of the initial position. In Fig. 5(a) we recorded
the position of the robot while testing the generalization
capabilities during 4000 samples.

B. Goal Seeking behavior
The GS controller generates behavior that makes the robot

rotate when no red object is in the field of view of the camera.

1

2

3

(a)

A

B

R1

2

(b)

Fig. 4. Training environments. (a) The training environment for the OA RC
network. During training we move one extra obstacle to random positions
at random moments. This is done to prevent the controller to generate the
same trajectory. (b) The training environment for the GS RC network where
the red object A (dashed square) is moved to B when the robot R approaches
the object within a specified distance.

1

2 4

3

(a) (b)

Fig. 5. (a) Robot trajectory generated by the OA system in a test
environment (different then during training). (b) Robot trajectory of the GS
behavior. The dashed line is the border of the test environment while the
start position is marked in both plots with a small square. Labeled squares
represent the sequence of the goal appearances.

When a red object becomes visible, the robot will drive to
the object while trying to centralize the object in its camera
view. At a certain distance from the red object, the robot will
stop moving.
For this behavior we use a reservoir with 800 neurons. The

input for this reservoir contains 8 values which represent the
camera image after preprocessing and normalization. This
normalization is achieved by using an equation similar to
equation (5). The readout layer has also 2 output units which
corresponds to the left and right wheel speed. The connection
matrix from input to the reservoir (Wr

i) has elements which
are 0 with a probability of 0.5. The other elements are −0.09
or 0.09 with equal probability. The reservoir has a spectral
radius of 0.9, a connection fraction of 0.8 and a leak rate
equal to 0.9.
During training of the GS behavior, we insert a red cube in

a different environment than the training environment of the
OA behavior and move it around to a different position if the
robot is close to the red cube. This is done by a supervisor
controller who simulates a catch when the robot approaches
the object. This training process is illustrated in Fig. 4(b).
After training, the system (RC network) produces the GS

behavior and is able to generalize as shown in Fig. 5(b). To
show this we put a red object at position 1. When the e-puck
reaches the object, we move the object to position 2,3 and 4.
We repeat this process during 4000 samples and observe that
the system is able to produce a behavior that is consistent.

V. LEARNING MULTIPLE BEHAVIORS
In this section we will describe how we create a switch-

ing/combining mechanism to establish complex behavior by
switching between primitive behaviors based on events.
The idea behind the hierarchical modular RC network is

to be able to get a complex control system without having
to write a controller that combines the primitive behaviors.
We try this by using the available information from each
primitive behavior.
We use a hierarchy of modular RC networks where we

have the primitive behaviors in a first layer and the switching
mechanism in a second layer. The inputs to the primitive
behaviors in the first layer together with there normalized
outputs, is fed to the second layer as input for our switching
mechanism. The output of each primitive behavior is nor-
malized by dividing the output with the maximum output
value possible (300). The inputs for OA and GS are the

RC1
GS

RC2
OA

RC3
S&CM

Ca
m

er
a

Im
ag

e'
Di

st
an

ce
 S

en
so

rs
'

A

B

C

Fig. 6. The modular topology with the two RC networks of the primitive
behaviors, in the first layer, and the switch and combination mechanism
(S&CM), in the second layer. The GS system has the normalized prepro-
cessed camera image as input and the wheel speeds as output. The OA
system on the other hand has normalized distance sensors as input and
also wheel speeds as output. The third RC network (S&CM) has both
the normalized preprocessed camera image and distance sensors as input
together with both normalized output wheel speeds of the OA and GS
RC network, while the output of the S&CM system are normalized wheel
speeds. In A and B the normalization is done by dividing the values through
the maximum speed value possible. In C the normalized output is converted
back by multiplying it with the same maximum speed value possible.

normalized distance sensors and preprocessed camera image,
respectively. The output of the third system (S&CM) in
the second layer, is the normalized wheel speed that is fed
back to the e-puck robot after multiplying it with again the
maximum output value possible. The topology of our system
is shown in Fig. 6.
For this mechanism we use a reservoir with 1200 neurons.

The reservoir has 20 inputs. Eight of them represent the
preprocessed camera image, eight of them represent the
normalized distance sensors and four inputs are respectively
the normalized outputs units of the OA and the GS reservoirs.
The readout layer also has 2 output units which correspond
to the left and right wheel speed. The connection matrix from
input to the reservoir (Wr

i) has elements which are −0.1 and
0.1 with equal probability. The bias to reservoir (Wr

b) is set

Desired output
Distance Sen

Output

Camera

Output

Distance Sen

Camera

Distance Sen

Camera

Output OA

Output GS

Output OA

Output GS

t

OA dataset

1 1 1 ... 1

GS dataset

Created dataset
Output OA Output GS

Desired output
Input Input

Desired output
Input

1 1 1 ... 1
1 1 1 ... 1
1 1 1 ... 1

A

B

Fig. 7. Concatenation of OA and GS datasets. Dashed rectangles represent
the data that is not available from the original dataset and has to be filled
with other data. Arrows A and B, represent the origin of this data. The time
(t) is represented by the horizontal arrow that is orientated to the right.

(a) (b)

Fig. 8. (a) The switch to a RP (Red Period). (b) After changing the position
of the red object the robot finds the new position and drives to it. The black
and gray lines represent the OA and GS behavior, respectively. The start
position is marked in both plots with a square.

as 0.05 with a connection fraction of 1. The reservoir has
the same spectral radius and connection fraction as GS and
uses a leak rate of 0.9.
We train the reservoir of this mechanism by constructing

a new dataset with data from the primitive behaviors. We
do this by concatenating the individual datasets as shown
in Fig. 7. The input layer of this reservoir has 20 values,
as mentioned above. If we just concatenate the individual
datasets we would be missing some unknown camera and
distance values in respectively the OA and GS datasets
which are represented by the dashed rectangles. Each block
represents an m×n matrix where n is the amount of samples
in the time direction (arrow t) and m represents the amount
of values which depends on the type of block (m=8 for
the camera and distance sensors and m=2 for the outputs).
Because we trained both behaviors in different environments
we can use the GS camera values to fill the gap in the OA
part (arrow B) and the distance values of OA to fill the gap
in the GS part (arrow A). Each part consist now of 8 distance
values, 8 camera values and 2 output speed values. We fill
the two missing speed values in the OA part with static input;
both equal to one which is arbitrary chosen and do the same
for the GS part. This is indicated by an arrow with ones for
the left and right wheel speed. By constructing the datasets
as described in Fig. 7 we have 20 values for the input layer in
both parts. The output layer is trained using teacher forcing,
by forcing the OA speeds during the training of the OA part
and the GS speeds during the training of the GS part of the
constructed dataset as illustrated in Fig. 7.
One can ask why we did not record the distance sensors

and camera values while recording the datasets of each
separate behavior, preventing us of copying parts of each
dataset to the other (arrow A and B in Fig. 7)? We have
done this intentionally because in this way there is only a
relationship between the distance sensors (camera values)
and the desired output in the OA (GS) part, respectively.
As shown in Fig. 8 this RC network produces a behavior

that is rather combining behaviors than switching between
them.
When there is no red object inside the environment the

system produces a combination of the OA and the turning
of the GS behavior. Therefore the resulting behavior has the
characteristics of a wall-follower when the initial position
of the e-puck is close to a border of the environment. After
1164 samples we put a red object in the environment (RP:
Red Period) and change the position of the object when the

Fig. 9. Results of modeling multiple behaviors. (a) Reservoir states of the
switch and combination system (S&CM). The plot shows 3 randomly chosen
states from the reservoir. Vertical lines represent the switching moments of
the behaviors. (b) The coordinates of the robot are shown during 4 switching
moments. The black and gray lines are the x and z coordinates respectively.
Vertical lines represent the switching moments.

A

(a) (b)
Fig. 10. (a) Comparison of generated trajectories from the RC method
(gray) and vector method (black) with a red object at position 1 in a
rectangular environment. In scenario 2 of the last experiment there is an
obstacle A used. (b) Comparison of robot trajectories from RC method (gray)
and vector method (black) in a rectangular environment with a red object
(1) in the corner of an obstacle. The start position is marked in both plots
with a small square.

e-puck reaches it. The e-puck reacts when it detects the red
object in its camera image and drives straight to it. When
we remove the red object again from the environment after
716 samples, the e-puck returns to the previous behavior. In
Fig. 9, one can observe a change in the reservoir states which
causes a change in the final wheel speeds and results in a
different trajectory, according to the behavior. We notice the
moments where the robot switches back and forth between
the two behaviors.
We compare the achieved behavior with the existing vector

method [1] for combining different behaviors. In this method
each influence of a behavior is seen as a vector which points
in the direction of the movement. The resulting movement

TABLE I
MEASUREMENTS OF BOTH METHODS IN 2 DIFFERENT SCENARIOS

RC method Vector method
time distance (m) time distance (m)

Scenario 1 4m 11s 7.28 2m 3s 3.18
Scenario 2 4m 47s 7.82 9m 38s 11.04

is that of the combination of each vector which we calculate
by averaging the left and right wheel speeds of both the
OA and GS behavior. If we position the e-puck robot in a
rectangular environment with his camera directed to the top
border of the environment and a red object at position 1, we
notice a difference in movement for both methods as shown
in Fig. 10(a) without the obstacle A.
We compare our technique to the vector method in the

risky configuration shown in Fig. 10(b) (where a red object
is situated in a corner among obstacles). With the vector
method, both vectors (for obstacle avoidance and goal seek-
ing) are directed in opposite directions which causes the
robot to stop. This figure also shows that the hierarchical RC
network can drive the robot correctly in this environment, by
switching the behavior to obstacle avoidance and deviating
from the obstacles.
In a different experiment we compare both techniques

during 2 scenarios. In scenario 1 there is no obstacle between
the robot and the red object (Fig. 10(a) without obstacle A)
while scenario 2 is with an obstacle in between (robot can not
see the red object, shown in Fig. 10(a) with obstacle A). We
repeat this experiment for each method 5 times per scenario
and measure the time and distance that the robot takes to
reach the red object. In Table I we notice after averaging
over 5 runs that the RC method is consistent in both scenarios
while the vector method scores very well in scenario 1 but
less in scenario 2.

VI. CONCLUSION

In this work we described a technique based on Reservoir
Computing (RC) for the modeling of multiple (conflict-
ing) behaviors for autonomous mobile robots. We use an
obstacle avoidance behavior, and a behavior that searches
and approaches a red object. Behaviors can be learned in
separate modules by giving a module examples of the desired
behavior. By testing the learned behaviors of the robot in
an environment different from the training environment we
showed the generalization capabilities of our system.
After learning primitive behaviors we extended our system

to a two-layered structure where each primitive behavior
module is located in the first layer. In the second layer, a
module was trained to switch between the modules of the
first layer, based on all sensor inputs and control signals.
This enables the robot to search for a target (red object in
this paper) without hitting any obstacles while doing so.
We compared this RC method for combining two behav-

iors with the existing vector method [1] which has a similar
movement as result in some situations. The experimental
results show that under particular environments, the RC
method performs better thant the vector method (e.g. our

method can correctly perform obstacle avoidance for risky
collision situations).
In future work we plan to investigate the applicability of

our system for more than two behaviors as well as to a real
e-puck robot. It would also be desirable that new behaviors
can be learned during operation of the robot by only showing
examples (e.g. moving its physical body in the environment
and recording its sensors and encoders).

VII. ACKNOWLEDGMENTS
This research is partially funded by the FWO Flanders

project G.0088.09, the FP7 funded ORGANIC project (FP7-
231267), and the Photonics@be Interuniversity Attraction
Poles program (IAP 6/10), initiated by the Belgian State,
Prime Minister’s Services, Science Policy Office.

REFERENCES
[1] Alex M. Andrew. Behavior-based robotics by ronald c. arkin, mit

press, cambridge, mass., 1998, xiv+491 pp, isbn 0-262-01165-4.
Robotica, 17(2):229–235, 1999.

[2] Eric A. Antonelo, Benjamin Schrauwen, and Jan Van Campenhout.
Generative modeling of autonomous robots and their environments
using reservoir computing. Neural Processing Letters, 26(3):233–249,
2007.

[3] Eric A. Antonelo, Benjamin Schrauwen, and Dirk Stroobandt. Event
detection and localization for small mobile robots using reservoir
computing. Neural Networks, 21:862–871, 2008.

[4] Eric A. Antonelo, Benjamin Schrauwen, and Dirk Stroobandt. Mobile
robot control in the road sign problem using reservoir computing
networks. In IEEE Int. Conf. on Robotics and Automation (ICRA),
2008. (accepted).

[5] Eric A. Antonelo, Benjamin Schrauwen, and Dirk Stroobandt. Model-
ing multiple autonomous robot behaviors and behavior switching with
a single reservoir computing network. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pages
1843–1848, Singapore, 10 2008.

[6] Valentino Braitenberg. Vehicles: Experiments in synthetic psychology.
MIT Press, Cambridge, Massachusetts, 1984.

[7] Harald Burgsteiner. Imitation learning with spiking neural networks
and real-world devices. Eng. Appl. Artif. Intell., 19(7):741–752, 2006.

[8] Cédric Hartland and Nicolas Bredeche. Using Echo State Networks
for Robot Navigation Behavior Acquisition. In ROBIO 07, pages 201–
206, Sanya China, 2007.

[9] Herbert Jaeger. The “echo state” approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148,
German National Research Center for Information Technology, 2001.

[10] Herbert Jaeger. Short term memory in echo state networks. Technical
Report GMD Report 152, German National Research Center for
Information Technology, 2001.

[11] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless telecommunication.
Science, 308:78–80, April 2 2004.

[12] Herbert Jaeger, Mantas Lukosevicius, and Dan Popovici. Optimization
and applications of echo state networks with leaky integrator neurons.
Neural Networks, 20:335–352, 2007.

[13] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-
time computing without stable states: A new framework for neu-
ral computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

[14] Benjamin Schrauwen, Michiel D’Haene, David Verstraeten, and
Jan Van Campenhout. Compact hardware liquid state machines on
fpga for real-time speech recognition. Neural Networks, 21:511–523,
2008.

[15] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout.
An overview of reservoir computing: theory, applications and imple-
mentations. In Proceedings of the European Symposium on Artificial
Neural Networks (ESANN), 2007.

[16] David Verstraeten, Benjamin Schrauwen, Michiel D’Haene, and Dirk
Stroobandt. An experimental unification of reservoir computing
methods. Neural Networks, 20:391–403, 2007.

