
Towards Autonomous Self-localization of Small

Mobile Robots using Reservoir Computing and Slow

Feature Analysis

Eric Antonelo, Benjamin Schrauwen

Department of Electronics and Information Systems

Ghent University

Ghent, Belgium

eric.antonelo@elis.ugent.be

Abstract—Biological systems such as rats have special brain
structures which process spatial information from the envi-
ronment. They have efficient and robust localization abilities
provided by special neurons in the hippocampus, namely place
cells. This work proposes a biologically plausible architecture
which is based on three recently developed techniques: Reservoir
Computing (RC), Slow Feature Analysis (SFA), and Independent
Component Analysis (ICA). The bottom layer of our RC-SFA
architecture is a reservoir of recurrent nodes which process
the information from the robot’s distance sensors. It provides
a temporal kernel of rich dynamics which is used by the upper
two layers (SFA and ICA) to autonomously learn place cells.
Experiments with an e-puck robot with 8 infra-red sensors (which
measure distances in [4-30] cm) show that the learning system
based on RC-SFA provides a self-organized formation of place
cells that can either distinguish between two rooms or to detect
the corridor connecting them.

Index Terms—reservoir computing, slow feature analysis, place
cells, robot localization

I. INTRODUCTION

Studies carried on rodents show that these animals can

efficiently process spatial information from their environment

[1]. They are able to get acquainted with a new environment

and through learning its features they can construct a spatial

representation of their environment (i.e., a cognitive map).

The part of the rat’s brain which is involved in this spatial

representation is the hippocampus, and more specifically, areas

CA1 and CA2 [1].

Intelligent autonomous navigation systems can be classified

in reactive and deliberative systems. Whereas reactive systems

consists of instantaneous sensory-motor mappings, deliberative

systems have more abstract planning capabilities and they

usually take into account the history of sensory inputs (or past

events) for taking the next action. The ability of a robot to self-

localize in its environment is clearly important once it provides

basic cognitive information to a deliberative navigation system.

In other words, it allows for planning and higher level cognitive

behavior in the context of mobile robots as well as biological

systems.

Traditional robot localization systems are designed mostly

by probabilistic methods which can perform SLAM (Simulta-

neous Localization And Mapping) under suitable assumptions

[2] and are usually built for robots having high-resolution

expensive laser scanners. Biologically inspired systems for

robot localization can be considered a competitive alternative

that works well for small mobile robots. Robustness, learning

and low computation time are some characteristics of these

biological inspired systems. Most systems are based on visual

input from a camera [3]–[6] and model hippocampal place

cells from rats [3]–[7].

These place cells are the main components of the spatial

navigation system in rodents. Each place cell codes for a

particular location of the rat’s environment, presenting a peak

response in the proximities of that location (the place field of

that cell). Other components of the brain’s spatial represen-

tation system includes head-direction cells, which encode the

orientation of the animal in its environment, and grid cells,

which are non-localized representations of space (having a

grid-like structure of activations in space) [1].

There are two classes of stimuli used by place and grid

cells, namely, idiothetic and allothetic. The former corresponds

to inner system signals, i.e., proprioceptive sensors such as

odometry signals (e.g., from encoders), inertia sensors, etc. The

latter (allothetic input) is represented by external information

coming from the environment such as distance sensors, camera,

touch sensors, etc. Most systems use allothetic information to

correct the odometry signals from dead reckoning [3], [5]–[7].

Previous work has focused on supervised learning ap-

proaches for robot localization using solely short-range noisy

distance sensors [8]. In this work, we propose a hierarchical

architecture with an unsupervised learning technique which

is built on the concept of slowness [9]. Our architecture is

composed of three layers, where the first layer is a randomly

created recurrent neural network (the reservoir) which func-

tions as a temporal kernel that projects the input to a high

dimensional dynamic space. The second layer receives the

signals from the reservoir and the input, and extracts the

slow features from it using Slow Feature Analysis (SFA)

[9]. The SFA layer learns to encode spatial representations

of the environment which are invariant over time. The third

layer performs sparse coding on the output of the SFA layer

using Independent Component Analysis (ICA) [10], generating

Draft version of paper to appear in the Proceedings of the IEEE SMC 2009 SMC 2009



localized representations of space (as the place cells from

biological systems).

Similarly to [4], we use SFA to model grid cells. While

they use several SFA layers and high-dimensional input from a

camera, we use only few noisy distance sensors and a RC-SFA

based architecture. As the reservoir weights remain fixed in our

RC-SFA architecture, only the upper layers learn. The reservoir

concept is first used in the form of Echo State Networks

[11] and Liquid State Machines [12]. These two learning

paradigms for recurrent neural networks have been recently

termed under the common name of Reservoir Computing [13].

Both techniques do not train the recurrent neural network, but

only a linear readout output layer (supervised learning).

As we will show in this paper, a small mobile robot

(the e-puck) can learn to self-localize in real environments

based solely on short-range noisy distance sensors. The main

advantages of this work are five-fold: the environment is

unstructured; the robot has small dimensions and only 8 short-

range distance sensors (4 cm - 30 cm); odometry information is

not used; self-localization emerges from an unsupervised learn-

ing process; and the model can correct itself from kidnapping

situations without any pre-design decision (the kidnapping is

not seen during learning).

The proposed architecture is biologically plausible and

models the place cells found in rodents. Previous work has

shown the modeling of place cells with the proposed architec-

ture only for simulated mobile robots [8]. Now we extend it to

real environment settings using the e-puck robot. In addition,

we show the importance of the timescale of the reservoir for

learning of place cells.

II. METHODS

A. Reservoir Computing

Reservoir Computing (RC) is used here to model the first

layer of our architecture. The basic building block of RC is

the reservoir, which is a randomly created recurrent neural

network. This network is composed of sigmoidal neurons and

is modeled by the following state update equation [11]:

x(t + 1) = f((1 − α)x(t) + α(Winu(t) + Wresx(t))), (1)

where: u(t) denotes the input at time t; x(t) represents the

reservoir state; α is the leak rate [14], [15]; and f() = tanh()
is the hyperbolic tangent activation function (common type

of activation function used in reservoirs). The connections

between the nodes of the network are represented by weight

matrices: Win is the connection matrix from input to reser-

voir and Wres represents the recurrent connections between

internal nodes. The initial state of the dynamical system is

x(0) = 0. A standard reservoir (without the leak rate) is found

when α = 1.
The connection matrices Win and Wres are randomly

generated and remain always fixed (non-trainable weights).

The recurrent connections Wres are generated from N(0, 1)
and rescaled such that the system is stable and the reservoir

has the echo state property (i.e., it has a fading memory [11]).

This can be done by rescaling the matrix so that the spectral

Fig. 1. RC-SFA architecture.

radius |λmax| (the largest absolute eigenvalue) of the linearized
system is smaller than one [11]. In this work, reservoir

weights (Wres) are rescaled to achieve a spectral radius of

|λmax| = 0.99 which is an arbitrarily chosen value which sets

the reservoir to the edge of stability. The initialization of Win

is given in Section III-A.

The reservoir dynamics can also be tuned to match the input

signal dynamics by changing the leak rate of the reservoir

α ∈ (0, 1] [14], [15]. So, low leak rates make the reservoir

function in a slow timescale, effectively increasing its memory

capacity but reducing its ability to respond quickly to input

signals. On the other hand, leak rates close to 1 yield reservoirs

with less memory to hold past stimuli but with more agile

processing of the input.

RC-based systems are usually trained in a supervised way.

In these systems, the reservoir states are mapped to the

desired output with a readout matrix which is usually found

by standard linear regression methods on the reservoir states

[13]. In this paper, we propose a RC-SFA architecture which

is a hierarchical network of nodes where the lower layer

is the reservoir and the upper layers are composed of SFA

and ICA units, respectively (Fig. 1). The function of the

reservoir is basically to expand the input signals to a high-

dimensional dynamic space. The randomly created reservoir

can be understood as a temporal non-linear kernel which

extract features from the input signal. Because of its recurrent

connections, the reservoir states contain echoes of the past

inputs, providing a short-term memory to our model. The

SFA layer receives signals from the input nodes u(t) and

from the reservoir nodes x(t). This layer learns instantaneous
functions of the input which are slowing-varying or invariant

representations [9] of the reservoir states. The ICA layer learns

a sparse and local representation of the SFA features and is

the last layer in our architecture. The following sections focus

on these upper layers.

Next, consider the following notation:

SMC 2009



nu : number of inputs;

nres: number of neurons in the reservoir;

nsfa: number of SFA units;

nica: number of ICA units.

B. Slow Feature Analysis

Slow Feature Analysis (SFA) is an unsupervised learning

method which finds instantaneous functions of the input based

on the concept of slowness [9]. It is able to extract slowing-

varying features of an input signal. In [16], it is shown that

SFA is able to reproduce qualitative and quantitative properties

of complex cells from the primary visual cortex V1. In [4],

grid cells (from the entorhinal cortex of rats) and hippocampal

place cells are modeled with an hierarchy of non-linear SFA

layers.

The learning problem can be defined as follows. Given

a high-dimensional input signal x(t), find a set of scalar

functions gi(x(t)) so that the SFA output yi = gi(x(t)) varies
as slowly as possible and still carries significant information.

Mathematically, find output signals yi = gi(x(t)) such that

[9]:

∆(yi) := 〈ẏ2
i 〉t is minimal (2)

under the constraints

〈yi〉t = 0 (zero mean) (3)

〈y2
i 〉t = 1 (unit variance) (4)

∀j < i, 〈yiyj〉t = 0 (decorrelation and order) (5)

where 〈.〉t and ẏ denote temporal averaging and the derivative

of y, respectively.
Algorithm: As a pre-processing step, the input signal x(t) is

normalized to have zero mean and unit variance. We consider

the linear case gi(x) = wT x, because the input signal is

already non-linearly expanded by the reservoir in the first layer.

The SFA learning algorithm is as follows:

Solve the generalized eigenvalue problem:

AW = BWΛ, (6)

where A := 〈ẋẋT 〉t and B := 〈xxT 〉t.
The eigenvectors w1,w2, ...,wnsfa

corresponding to the or-

dered generalized eigenvalues λ1 ≤ λ2 ≤ ... ≤ λnsfa
solve the

learning task, satisfying (3-5) and minimizing (2) (see [9] for

more details). This algorithm is guaranteed to find the global

optimum.

Architecture: The SFA layer in our architecture (Fig. 1) is

denoted by ysfa(t):

ysfa(t) = Wsfaxsfa(t), (7)

where: xsfa(t) is the input vector at time t consisting of a

concatenation of input u(t) and reservoir states x(t). Note
that the states x(t) are generated by feeding the input u(t)
for t = 1, 2, ...ns in equation (1), where ns is the number of

samples. The matrix Wsfa is a nsfa×(nu +nres) matrix found

by solving (6). After learning, ysfa(t) generates non-localized

representations of the environment, in a similar way as grid

cells of the entorhinal cortex of rats [1].

C. Independent Component Analysis

Independent Component Analysis (ICA) is a method for

sparse coding of an input signal as well as blind source

separation [10]. The learning problem of ICA [10] can be

defined as follows. Assume that a linear mixture of signals

x1, x2...xn can be used for finding the n independent com-

ponents or latent variables s1, s2...sn. The observed values

x(t) = [x1(t), x2(t)...xn(t)] can be written as:

x(t) = As(t) (8)

where A is the mixing matrix; and s(t) = [s1(t), s2(t)...sn(t)]
is the vector of independent components (both A and s(t) are
assumed to be unknown). The vector s(t) can be generated

after estimating matrix A:

s(t) = Wx(t) (9)

where W is the inverse matrix of A. The basic assumption

for ICA is that the components si are statistically independent

and have nongaussian distributions [10].

Algorithm: We use the FastICA algorithm for finding W

[10]. The observed vector x(t) is preprocessed by centering

(zero-mean) and whitening (decorrelation and unit variance)

[10]. The algorithm tries to maximize the nongaussianity of

ICA neurons wx(t). A sketch of the algorithm (for one unit)

is found below:

1. Initialize w randomly

2. Let w+ = E{xg(wT x)} − E{g′(wT x)w}
3. Let w = w+/‖w+‖
4. Do steps 2 and 3 until convergence,

where g is the derivative of a nonquadratic function G (in this

work, G(u) = u3) (see [10] for details). Convergence means

that vectors w+ and w point in the same direction.

Architecture: The ICA output is:

yica(t) = Wicaysfa(t), (10)

where: ysfa(t) is the input vector at time t (the observed

values); Wsfa is the mixing matrix (nica × nsfa); and yica(t)
is the output of the ICA layer, which, in this work, learns

to generate localized outputs which model hippocampal place

cells of rats [1].

D. Robot and Controller

The robot used in the following experiments is the e-

puck robot [17] extended with 8 infra-red sensors which can

measure distances in the range [4-30] cm (see Fig. 2). For

generating datasets with recorded sensor readings, we use a

robot controller written in Matlab that communicates with the

e-puck through a Bluetooth link. The controller performs basic

wall following in the environment and it switches randomly

to left or right wall following with a certain probability ρ.
When the robot switches from right to left wall (or vice-

versa), it can generate ellipse-like trajectories inside a room

until it finds a wall to follow (see Fig. 4). One iteration (for

sensing and acting) lasts 200 ms on average. The speed of

the robot is not constant. The e-puck motor actuator sets the

speed (steps/second) of a stepper motor (the maximum speed

SMC 2009



Fig. 2. E-puck robot extended with longer-range infra-red sensors which can
measure distance in the range 4 cm - 30 cm.

is 1000 steps per second). In this work, the actuator is limited

to the interval ±[15, 385] steps/s (or ±[0.198, 5.08] cm/s).

The 8 distance sensors are sequentially read while the robot

is moving (our architecture is not modeled to correct these

delays between sensor readings, but instead the reservoir may

autonomously solve inconsistencies involved in this process

because of the memory its recurrent connections provide). The

signal u(t) ∈ [0, 1] is built by recording the 8 distance sensors

during robot navigation and scaling them to the interval [0, 1].

III. EXPERIMENTS

A. Introduction

This section shows experiments with the e-puck robot in

an unstructured environment with 2 rooms connected by a

corridor (Fig. 3). The robot navigates in this environment

according to the controller described in previous section. So,

it can stay navigating in one room for a random time interval,

eventually making ellipse-shaped trajectories or leaving the

room towards the corridor (see Fig. 4). The randomness

of the robot movement is determined by ρ (see previous

section). We have made experiments with different settings

(ρ = 0, ρ = 0.004, ρ = 0.008) and in all of them, place

cells could be learned (the more random the movement, the

more difficult the place cell learning). This section shows

results considering the most random behavior (ρ = 0.008).
We recorded the robot sensor readings in a dataset during 67

minutes of navigation in the environment (generating 18120

iterations of sensing-acting). The complete robot trajectory is

shown in Fig. 4. For making this trajectory, we use a camera

placed at the top of the environment and the ReactiVision

recognition software [18] to record the position and heading

of the robot during navigation. Fig. 4 also shows 25 labeled

positions which partition the environment in smaller locations

(strictly for analysis purposes).

In the following, we describe the initialization of parameters

for the experiments in this section. The number of inputs are

nu = 8 corresponding to the robot’s distance sensors. The

reservoir has nres = 600 neurons. The upper layers have each

4 units (nsfa = nica = 4). The size of the SFA and ICA

layers has a direct consequence on what type of place cells are

learned. In [8], 70 units for each of the upper layers are used,

generating around 60 place cells after learning (for a big maze).

In the current work, 4 units are used because the environment is

smaller and contains only 2 rooms. The SFA layer is associated

with grid cells found in the entorhinal cortex of rats [1], for

instance, in the simulated rat’s experiment in [4]. As grid

Fig. 3. Environment used for the experiments shown in this paper (width:
120 cm; height: 90 cm). It is composed of two rooms connected by a corridor
(built with painted bricks).

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

6

7

8
9 10 11 12 13 14 15 16

17
18

19

20

21

22

23
24

25

X (m)

Y
 (

m
)

Fig. 4. Trajectory (in gray) generated by the robot controller in environment
from Fig. 3 for 67 minutes. Twenty five (25) labeled asterisks are manually
defined in this environment for analysis purposes.

cells are non-localized representation of space (they fire for

more than a single location) [4], [8], sparse coding is used for

learning place cells (the ICA layer). Previous work [8] only

uses one timescale in the reservoir. For the current experiments

with a real robot, better results were achieved with a reservoir

having multiple timescales (leak rates set to α1 = 0.05 for

half of the reservoir and α2 = 0.15 for the other half). These

settings were necessary because the current robot has a variable

speed and a more random movement behavior, thus requiring

a reservoir with slow-processing and fast-processing neurons

(in [8], the robot speed is constant and the robot behavior

less random). The matrix connecting the input to the reservoir

(Win) is initialized to -2, 2 and 0 with probabilities 0.075,

0.075 and 0.85, respectively.

The RC-SFA architecture learns in steps, from the bottom

SFA layer to the top ICA layer, and uses 7/8 of the input

signal (15855 timesteps) as the training dataset and 1/8 (2265

timesteps) is used for testing. First, the SFA layer learns

by solving (6) where the inputs are the reservoir states and

distance sensors (like in (7)). After Wsfa is found, the output

of SFA units ysfa(t), t = 1, 2, ..., ns is generated using (7).

Afterwards, the ICA layer learns its connections weights using

the FastICA algorithm from Section II-C where the inputs for

SMC 2009



this layer are the output of the SFA units.

B. Results

This section shows the results after training the SFA and

ICA layers with the setup presented in the previous section.

Four different SFA and ICA units are generated after learning.

We have observed that some units are most sensitive to the

robot movement direction (not shown). We only show here the

place cell which learned to be position invariant (see Fig. 5).

This unit could distinguish between the two rooms of the

environment even though the robot could stay in one room

for a random time interval and generating random movements

in it. In this sense, this place cell could be used for room

detection (robot localization). Fig. 5 shows the response of the

place cell (ICA unit 2) as a function of the robot position in

the environment (first plot) and the place cell output over time

(second plot). The colored dots represent the output of the ICA

unit (where red denotes a peak response, green an intermediate

response, and blue a low response). It is possible to see that

this unit learned to detect in which room the robot is located,

that is, high responses (red and yellow) in right room and low

responses (blue) in left room.

Results on test data (trajectories unseen during learning) are

shown in Fig. 6 for same ICA unit 2. It also shows that the

learned place cell can distinguish between the rooms for new

robot trajectories, which indicates its generalization capability.

Note that when the robot first enters the right room, the ICA

output is green for some time period until it turns to red. So,

it takes some time until the unit responds with a high activity

in this room.

We also tested the capability of RC-SFA architecture to

recover from a kidnapping situation. For that, we used the

same test dataset as in Fig. 6, but we kidnapped the robot

twice at timesteps 150 and 640 and placed it back at timesteps

400 and 980 respectively. In other words, we shifted the robot

from the right room to the left room and after some timesteps

unit: 2

0 5000 10000 15000
0

10

20

Place cells − ICA activation map − Training phase
unit: 2

Timesteps

L
o
c
a
ti
o
n

Fig. 5. Place cell representations on training data. Dots in red denote a peak
response, in green an intermediate response, and in blue a low response. Top:
Response of ICA units as a function of the robot position in the environment.
Bottom: the ICA output over time. For each location (in time) given by the
labeled asterisks in Fig. 3, there is a colored dot representing the ICA output.

unit: 2

0 500 1000 1500 2000
1

12

25

Place cells − ICA activation map − Test phase
unit: 2

Timesteps

L
o
c
a
ti
o
n

0 500 1000 1500 2000
−2

0

2

IC
A

 o
u
tp

u
t

Fig. 6. Place cell representations on test data. Top: Response of ICA units as
a function of the robot position in the environment. Bottom: the ICA output
over time. The output is also plot as a black dashed line.

100 200 300 400 500 600
1

12

25

Place cells − ICA activation map − Kidnapping
unit: 2

Timesteps

L
o
c
a
ti
o
n

100 200 300 400 500 600
−2

0

2

IC
A

 o
u
tp

u
t

Fig. 7. Kidnapping the robot. The ICA output over time. For each location
(in time) given by the labeled asterisks in Fig. 3, there is a colored dot where
red denotes a peak response, green an intermediate response, and blue a low
response. The output is also shown as a black dashed line.

from the left room to right room. The output of ICA unit 2

over time is shown in Fig. 7. It takes approximately 20 to 30

timesteps until the place cell recover itself from the kidnapping

event and output a correct response. It is possible to note that

the response transition of the unit is smooth despites the abrupt

kidnapping event.

During the experiments, we have seen that the timescales

present in the reservoir (leak rates) are very important for

learning place cells. By tuning two distinct timescales in the

reservoir and, in this way, empowering it with fast and slow

processing neurons, we get the best performance in terms of the

generated place cell. Currently, this fine-tuning is performed

manually (there is no automated way yet). However, by ranging

over different values for the leak rates, different place cells

emerge from the unsupervised learning process. For instance,

by setting the leak rates to α1 = 0.11 for one half of the

reservoir and α2 = 0.14 for the other half, we get a place cell

which can detect the corridor of the environment. Fig. 8 shows

this place cell (ICA unit 1) which presented a peak response

(red) when the robot crossed the corridor, but a low response

(blue) otherwise.

The experiments presented in this section were repeated for

many distinct randomly generated reservoirs. In each of these

SMC 2009



unit: 1

0 500 1000 1500 2000
1

12

25

Place cells − ICA activation map − Test data
unit: 1

Timesteps

L
o
c
a
ti
o
n

0 500 1000 1500 2000
−2

0

2

IC
A

 o
u
tp

u
t

Fig. 8. Corridor detection with different timescales in the reservoir (on test
data). Top: Response of ICA units as a function of the robot position in the
environment. Bottom: the ICA output over time. The output is also plot as a
black line.

runs, the learned place cells were qualitatively similar.

IV. CONCLUSION AND FUTURE WORK

This work presented a new biologically inspired architecture

(RC-SFA) which in principle can be applied to a wide range of

applications (from speech recognition to modeling of several

aspects of intelligent robots). By using RC-SFA, the current

paper modeled place cells for autonomous learning of locations

using an e-puck robot extended with 8 longer-range (4 cm -

30 cm) infra-red sensors.

The RC-SFA architecture is a hierarchical network com-

posed of an untrained and randomly generated reservoir of

recurrent neurons in the first layer, and two upper layers which

learns by Slow Feature Analysis (SFA) [9] and Independent

Component Analysis (ICA) [10], respectively. The SFA layer

extracts the slow features from the reservoir states and distance

sensors, generating signals which are invariant to fast-varying

input signals but dependent on slowing-varying input signals.

It is in this way that the robot position in the environment

can be extracted from the distance sensors and the reservoir

states. Finally, the ICA layer, by performing sparse coding,

generates independent signals with spike-like responses for

learning place cells.

In this work, place cells learned either to distinguish in

which room the robot was or to detect the corridor connecting

these two rooms. The type of place cell which can emerge from

the unsupervised learning process depends on two main things:

the timescales present in the reservoir; and the movement

pattern of the robot. We have also shown that the place cells

can recover nicely from kidnapping situations which are not

present in the training dataset.

The advantages of the current approach include: the envi-

ronment is unstructured; it works for robots of small dimen-

sions and with cheap sensors; and no proprioceptive informa-

tion (odometry) is necessary for predicting the location of the

robot. This work is just a short investigation of the applications

of the RC-SFA architecture, particularly to autonomous learn-

ing of the self-localization ability for small robots. Future work

may be performed in modeling bigger environments with more

rooms, including dynamic environments. Additionally, it would

be very desirable to implement on-line learning techniques for

the SFA and ICA layers so that the robot could learn while it

moves in the environment.

ACKNOWLEDGMENT

This research is partially funded by the EC’s project OR-

GANIC (FP7-231267). Eric Antonelo is sponsored by the

Special Research Fund of Universiteit Gent (BOF).

REFERENCES

[1] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells and the
brains spatial representation system,” Annual Reviews of Neuroscience,
vol. 31, pp. 69–89, 2008.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[3] A. Arleo, F. Smeraldi, and W. Gerstner, “Cognitive navigation based on
nonuniform gabor space sampling, unsupervised growing networks, and
reinforcement learning,” IEEE Transactions on Neural Networks, vol. 15,
no. 3, pp. 639–652, May 2004.

[4] M. Franzius, H. Sprekeler, and L. Wiskott, “Slowness and sparseness lead
to place, head-direction, and spatial-view cells,” PLoS Computational

Biology, vol. 3, no. 8, pp. 1605–1622, August 2007.
[5] T. Stroesslin, D. Sheynikhovich, R. Chavarriaga, and W. Gerstner,

“Robust self-localisation and navigation based on hippocampal place
cells,” Neural Networks, vol. 18, no. 9, pp. 1125–1140, 2005.

[6] M. Milford, R. Schulz, D. Prasser, G. Wyeth, and J. Wiles, “Learning
spatial concepts from ratslam representations,” Robot. Auton. Syst.,
vol. 55, no. 5, pp. 403–410, 2007.

[7] R. Chavarriaga, T. Strsslin, D. Sheynikhovich, and W. Gerstner, “A
computational model of parallel navigation systems in rodents,” Neu-

roinformatics, vol. 3, pp. 223–241, 2005.
[8] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Unsupervised

learning in reservoir computing: Modeling hippocampal place cells for
small mobile robots,” in International Conference on Artificial Neural

Networks (ICANN), 2009, (accepted).
[9] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised

learning of invariances,” Neural Computation, vol. 14, no. 4, pp.
715–770, 2002.

[10] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural Networks, vol. 13, pp. 411–430, 2000.

[11] H. Jaeger, “The “echo state” approach to analysing and training
recurrent neural networks,” German National Research Center for
Information Technology, Tech. Rep. GMD Report 148, 2001.

[12] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[13] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the European Symposium on Artifical Neural Networks

(ESANN), 2007.
[14] H. Jaeger, M. Lukosevicius, and D. Popovici, “Optimization and appli-

cations of echo state networks with leaky integrator neurons,” Neural

Networks, vol. 20, pp. 335–352, 2007.
[15] B. Schrauwen, J. Defour, D. Verstraeten, and J. Van Campenhout, “The

introduction of time-scales in reservoir computing, applied to isolated
digits recognition,” in Proceedings of the International Conference on

Artificial Neural Networks (ICANN), 2007.
[16] P. Berkes and L. Wiskott, “Slow feature analysis yields a rich repertoire

of complex cell properties,” Journal of Vision, vol. 5, pp. 579–602, 2005.
[17] F. Mondada, “E-puck education robot,” September 2007, http://www.e-

puck.org/.
[18] M. Kaltenbrunner and R. Bencina, “reactivision: a computer-vision

framework for table-based tangible interaction,” in TEI ’07: Proceedings

of the 1st international conference on Tangible and embedded interac-

tion. New York, NY, USA: ACM, 2007, pp. 69–74.

SMC 2009


