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Abstract. ! Soft sensor technology has been increasingly used in indus-
try. Its importance is magnified when the process variable to be estimated
is key to control and monitoring processes and the respective sensor ei-
ther has a high probability of failure or is unreliable due to harsh environ-
ment conditions. This is the case for permanent downhole gauge (PDG)
sensors in the oil and gas industry, which measure pressure and tempera-
ture in deepwater oil wells. In this paper, historical data obtained from an
actual offshore oil well is used to build a black box model that estimates
the PDG downhole pressure from platform variables, using Echo State
Networks (ESNs), which are a class of recurrent networks with power-
ful modeling capabilities. These networks, differently from other neural
networks models used by most soft sensors in literature, can model the
nonlinear dynamical properties present in the noisy real-world data by
using a two-layer structure with efficient training: a recurrent nonlinear
layer with fixed randomly generated weights and a linear adaptive read-
out output layer. Experimental results show that ESNs are a promising
technique to model soft sensors in an industrial setting.

Keywords: echo state network, soft sensor, gas-lift oil well, reservoir
computing

1 Introduction

With the advancement of powerful machine learning methods in the last decades,
soft sensor technology has been made possible for a broad range of industries.
Soft sensors aim to provide an additional source of information for process vari-
ables which are not reliable enough or whose expensive sensors can fail perma-
nently, for instance, in harzadous environments. These soft sensors are predictive
models built with methods which can infer an output y(¢) based on a number
of input measurements u(¢) [1]. The most common way of building soft sen-
sors is through system identification using historical time series which show the
(likely nonlinear) relationship between process variables. The resulting soft sen-
sors are called data-driven since they are empirically obtained. Grey-box models
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and black-box models can be used to fit the empirical data. However, black-box
models are more often used for soft sensor technology than grey-box models
[2], which have in artificial neural networks (ANNs) their most important and
frequently used method [3]. This is because ANNs can efficiently model nonlin-
ear relationships in process variables, which is usually the case for real-world
processes.

Deepwater or low pressure oil wells usually require gas-lift technology in
order to extract the oil from the well. The artificially injected gas diminishes the
density of the well fluid, which, in turn, makes possible its extraction with the
created difference in pressure. The downhole pressure is essential in assessing the
dynamics of the oil well and must be monitored for controlling the productivity
and stability of the well through the gas-lift flow rate as well as the production
choke. The problem comes from the fact that permanent downhole gauge (PDG)
sensors have a prohibitive cost for maintainance or replacement [4], and also
that their premature failure is not uncommmon. Additionally, pertubations and
noise can affect the PDG sensor measurements, making it not always a reliable
information source.

Therefore, ANN-based soft sensors represent an important and alternative
way of monitoring these variables. As the objective is to model an unknown di-
namical system from real-world data, it is necessary that the used model main-
tains an internal state as a dynamical system does. This can be directly achieved
by using a recurrent neural network (RNN), considered an universal approxima-
tion method for dynamical systems. An alternative is to use a tapped delay line
with feedforward networks, which provides a finite window of past inputs, but
provides no internal state for the network as the RNN does. Most models in
literature use this last approach [5] or alternatively NARMAX models [6], since
training an RNN with backpropagation-through-time is not trivial due to slow
convergence properties and existence of bifurcations during training.

This paper aims to build a soft sensor of downhole pressure for gas-lift oil
wells using a particular model of RNNs which exhibit fast training without local
optima. Analog recurrent networks of these type are called Echo State Networks
(ESNS) [7]. Their distinct feature is to separate the network in two main layers:
one randomly generated pool of recurrent nonlinear neurons (called the reservoir
2), and a linear adaptative readout layer (see Fig. 1). As the recurrent reservoir
has its weights randomly generated, only the readout output layer needs to
be trained, usually using linear regression methods such as the Least Squares
method which has global convergence properties. Thus, the complexity of train-
ing recurrent weights is nonexistent. It is also possible to see the reservoir as
a nonlinear dynamical kernel which projects the input into a high-dimensional
nonlinear space, facilitating learning complex models. Methods which share this
type of feature are called in literature Reservoir Computing (RC) methods [8].

In [9], a simulated vertical riser model was identified using ESNs as a black-
box model. The ESN, by using feedback from the output to the reservoir layer,
was able to sustain oscillations as well as steady states with only a single ESN.

2 The term reservoir is not related to reservoirs in oil and gas industry.
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Fig. 1. Reservoir Computing (RC) network. The reservoir is a non-linear dynami-
cal system usually composed of recurrent sigmoid units. Solid lines represent fixed,
randomly generated connections, while dashed lines represent trainable or adaptive
weights.
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Fig. 2. Oil well scheme showing the location of sensors and chokes. FT3 is a flow
rate sensor; PT# and TT# are pressure and temperature sensors. SDV stands for
ShutDown Valve.

The input consisted of a single variable, the opening of the production choke,
and the output to be estimated was the downhole pressure. In the current paper,
instead of using simulation data, the ESN-based model is built from real-world
data obtained from a particular deepwater oil well. The PDG downhole pressure
is estimated based on input from 8 sensor measurements plus 2 choke openings
(gas-lift and production chokes). All these input measurements come from the
platform variables since seabed variables are not always available in offshore oil
wells (see Fig. 2 for a scheme with position of sensors and chokes). The main
contribution of this paper lies in the analysis of the powerful RC approach in
modeling real-world noisy data from the gas and oil industry.



In the following section, the ESN model and training is presented. Section 3
presents the procedure to build the ESN-based soft sensor. Next, experimental
results are shown in Section 4 and the conclusion drawn in Section 5.

2 Reservoir Computing

2.1 ESN model

An ESN is composed of a discrete hyperbolic-tangent RNN, the reservoir, and
of a linear readout output layer which maps the reservoir states to the ac-
tual output. Let n;,n, and n, represent the number of input, reservoir and
output units, respectively, u[n] the n;-dimensional external input, x[n] the n,-
dimensional reservoir activation state, y[n] the n,-dimensional output vector, at
discrete time n. Then the discrete time dynamics of the ESN is given by the
state update equation

x[n +1] =(1 — a)x[n] + a f (Wix[n] + Wiuln]+
Wiyln] + W3, (1)

and by the output computed as:

y[n+1] = g(Wix[n + 1] + Wiu[n] + Wiy[n] + W) (2)
=g (W (x[n + 1], u[n], y[n], 1)) (3)
=g (Woutz[n + 1]) , (4)

where: « is the leak rate [10,11]; f(-) = tanh(-) is the hyperbolic tangent ac-
tivation function, commonly used for ESNs; g is a post-processing activation
function (in this paper, g is the identity function); W°" is the column-wise
concatenation of W2, W?, W¢ and Wp; and z[n + 1] = (x[n + 1], u[n], y[n], 1)
is the extended reservoir state, i.e., the concatenation of the state, the previous
input and output vectors and a bias term, respectively.

The matrices W[ = represent the connection weights between the nodes of
the complete network, where r, 7, 0, b denotes reservoir, input, output, and bias,
respectively. All weight matrices representing the connections to the reservoir,
denoted as W, are initialized randomly (represented by solid arrows in Figure
1), whereas all connections to the output layer, denoted as W?, are trained
(represented by dashed arrows in Figure 1). For the experiments in this paper,
output feedback and bias to reservoir are not used (W}, and W7 are not present).
Additionaly, W2, W¢ and WY are also absent. Thus, equations (1) and (2)
become:

x[n+ 1] = (1 — a)x[n] + af (Wix[n] + Wiuln]) (5)
yin+1l=g (WOUtx[n + 1}) ) (6)

The non-trainable connection matrices W}, W are usually generated from
a Gaussian distribution N(0, 1) or a uniform discrete set {—1,0,1}. During this



random initialization, sparsity can be obtained by using a parameter called con-
nection fraction ¢f2  which determines the percentage of nonzero weights in the
respective connection matrix WS . Another parameter in this procedure is the
input scaling vf® =~ which is a scalar multiplied by the respective matrix W{o .
This scaling of matrices is important because it influences greatly the reservoir
dynamics [8] and, in this way, must be tuned for optimal performance in most
cases.

The weights from the reservoir connection matrix W} are obtained randomly
through a Normal distribution (N (0, 1)) and then rescaled such that the resulting
system 1is stable but still exhibits rich dynamics. A general rule to create good
reservoirs is to set the reservoir weights such that the reservoir has the Echo State
Property (ESP) [12], i.e., a reservoir with fading memory. A common method
used in literature is to rescale WL such that its spectral radius p(W:) < 1
[12]. Although it does not guarantee the ESP, in practice it has been empirically
observed that this criterium works well and often produces analog sigmoid ESNs
with ESP for any input.

It is important to note that spectral radius closer to unity as well as larger
input scaling makes the reservoir more non-linear, which has a deterioration
impact on the memory capacity as side-effect [13]. The scaling of these non-
trainable weights is a parameter which should be chosen according to the task
at hand empirically, analyzing the behavior of the reservoir state over time, or
by grid searching over parameter ranges.

Most temporal learning tasks require that the timescale present in the reser-
voir match the timescales present in the input signal as well as in the task space.
This matching can be done by the use of a leak rate (o € (0,1]) and/or by
resampling the input signal. For instance, low leak rates yield reservoirs with
more memory which can hold the previous stimuli for longer time spans.

2.2 Training

Training the RC network means finding WU in (2) or (6), that is, the weights
for readout output layer from Fig. 1. For that, the reservoir is driven by an
input sequence u(1l),...,u(ns) which yields a sequence of extended reservoir
states z(1),...,z(ns) using (1) (the initial state is x(0) = 0). The desired target
outputs y[n] are collected row-wise into a matrix Y. The generated extended
states are collected row-wise into a matrix X of size ng x (n, +n; +n, + 1) if
using (1) or ns x n, if using (5).

Then, the training of the output layer is done by using the Ridge Re-
gression method [14], also called Regularized Linear Least Squares or Tikhonov
regularization [15]:

Wt — (XTX +AI)7'XTY (7)

where W°U is the column-wise concatenation of ‘W¢, and the optional matrices
W?, W2 and ng denotes the total number of training samples.



In the generation of X, a process called warm-up drop is used to disregard
a possible undesired initial transient in the reservoir starting at x(0) = 0. This
is achieved by dropping the first n,,q samples so that only the samples z[n],n =
Nawd, Mwd + 1, ..., ns are collected into the matrix X.

The learning of the RC network is a fast process without local minima. Once
trained, the resulting RC-based system can be used for real-time operation on
moderate hardware since the computations are very fast (only matrix multipli-
cations of small matrices).

Error measure For regression tasks, the Normalized Root Mean Square Error
(NRMSE) is used as a performance measure and is defined as:

R (DETTIRY .

where the numerator is the mean squared error of the output y[n] and the de-
nominator is the variance of desired output §[n].

3 Soft Sensor through ESNs

The task is to infer the downhole pressure at the PDG sensor, located in the
seabed, from sensor measurements obtained at the more easily accessible plat-
form location (see Fig. 2). The sets of input and output variables are given in
Table 1. In this work, the ESN or RC network is used to learn a dynamical map-
ping between the input variables u(¢) (which, in principle, consists of 10 inputs
normalized to the interval [0, 1], corresponding to the 8 platform variables from
Table 1 plus the openings of the gas-lift choke and production choke) and the
output variable y(t) (PDG pressure sensor). The available dataset contains 5
months of measurement data: 08/2010, 01,2011, 07/2011, 11/2011 and 12/2011.
The measured downhole pressure for the complete period can seen in Fig. 3.

Table 1. Process variables

Tag Process variable Location Variables Set
PT1 Downhole pressure Seabed Output
TT1 Downhole temperature Seabed —
PT2 WCT pressure Seabed —
TT2 WCT temperature Seabed —
PT3 Pressure before SDV Platform Input
TT3 Temperature before SDV Platform Input
FT3 Instantaneous gas-lift flow rate Platform Input
PT4 Pressure after SDV Platform Input
PT5 Pressure after production choke Platform Input
PT6 Pressure before production choke Platform Input
TT6 Temperature before production choke Platform Input

PT7 Pressure before SDV Platform Input
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Fig. 3. Downhole Pressure (PT1) measured over the complete period of 5 months.
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Fig. 4. Scheme showing how the dataset is divided for training and test. Grey-shaded
rectangles plus randomly chosen white rectangles (indicated by sticks) are selected for
training, while white ones are used for test. See text for more information.

The soft sensor is built according to one of the following approaches: using
all the available sampled data (5 months); and using only a limited number of
samples such as from only one month. Considering the former case, i.e., when
the whole dataset is used, the exhibited dynamical nonlinear behavior range is
very wide. This is because the measurements can also include cases when the
well is closed, causing abnormal behavior, and also that a prolonged period will
include different or evolving relationships between variables for samples very
distant from each other in time. Taking this into account, we propose a method
to select a representative subset of the dataset for training and the rest for test.
The method is graphically represented in Fig. 4 and described in the following.
We decide that 70% of the dataset is selected for training, while the rest 30%
is used for test. For that, first, the dataset is divided into two groups, gray and
white rectangles, which are alternatingly chosen in the time axis, as individual
sample slices each containing 2,000 measurements (the sampling rate is one
measurement per minute). Now, we have two sets, each having 50% of the dataset
(situation A in the figure). To form the training dataset, we add more 20% of
randomly chosen white rectangles to the the training dataset, indicated in Fig. 4
by little sticks. The resulting operation leads to the re-arranged sample slices
used for training and test (Situation B in the plot), where now the temporal
order is only valid between the samples contained in the slices.



4 Experimental Results

4.1 Whole dataset

Using the method described in the previous section and shown in Fig. 4, 70% of
the dataset was selected for training and validation whereas the rest 30% of the
data was reserved for testing. With the selected 70%, a grid-search experiment
was accomplished to find the best performing parameters: input scaling v}, leak
rate «, and spectral radius p(W7). Fixed parameters were as follows: size of
reservoir n, = 200 and all connection fractions were ¢: = 1. Each run of the grid
search was made through a 5-fold random cross-validation procedure, considering
3 randomly generated reservoirs, where the ridge regression parameter A was
optimized for each generated reservoir. The values found were as follows: vf =
0.2, & = 0.5, and p(W7}) = 0.5.

Next, the RC network was trained using above parameters on the whole train-
ing dataset, and the generalization results were obtained evaluating the trained
network on the test dataset (30% of the samples). Fig. 5 shows these results com-
paring the predicted network output (given by a light blue line) to the target
output (or the measured downhole pressure PT1, given by a black line). Each
vertical dashed line marks the frontier between one sample slice and the next one
(see Section 3), each one containing 2,000 consecutive samples (measured each
minute). Fig. 5 (a) shows the prediction over the complete test set, revealing
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Fig. 5. Results considering 5 months of well sample data. The estimated and real PDG
pressures are given by blue and black solid lines, respectively. Each vertical dashed line
delimits slices containing 2,000 minutes of samples each.



that most of the operating points of the downhole pressure were correctly esti-
mated. The dynamical properties of this signal varied considerably taking into
account all the 5 months. Some nonlinear dynamical behaviors present in the
dataset were feasible to be learned while other periods showed inconsistencies
(Fig. 5 (b)), probably due to abnormal and less frequent behaviors, which may
not be inferred from the input variables. The NRMSE on test data was 5.03 for
a reservoir of 200 units and 4.81 for a reservoir of 400 units.

Furthermore, to verify which variables were most important for the estima-
tion task, a procedure called backward variable removal was executed. It consists
of starting with all 10 variables as inputs, and removing the one that results in
the least error at that iteration. At the next iteration, the same logic is executed.
Fig. 6 (a) shows the results of this procedure. The minimal error is reached when
variables FT3, PT6, PT3, and PT4 are removed. The most important variables
are TT6 (which was not removed during the complete process), P.C (production
choke), G.C (gas-lift choke).

4.2 One month dataset

Considering a smaller section of the dataset, corresponding to the samples ob-
tained on December 2011, an RC network of 200 reservoir units was trained
with the same parameters from the previous section: v = 0.2, o = 0.5, and
p(W1) = 0.5. The regularization parameter A was chosen using a randomly se-
lected validation set. In Fig. 6 (b), the predicted downhole pressure for the last
30% samples of the month can be seen using an RC network trained on the first
70% samples. The blue line shows that the estimation is considerably good when
compared to the target PT1 downhole pressure. The test NRMSE is 5.84 (note
that the NRMSE has a denominator equal to the variance of the target signal,
which means that a smaller variance will increase the NRMSE, which is the case
here compared to previous section’s results).
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Fig. 6. (a) Backward variable removal results showing the test NRMSE as variables
are gradually removed. (b) Results considering the last month (December 2011) for
both training and test. The lines represent the same concepts as in Fig. 5.
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5 Conclusion

In this work, ESNs (RC networks) have been used to construct a black-box
model of a soft sensor in deepwater oil wells. The task was to infer the PDG
downhole pressure in an actual oil well based on readings from the platform
sensor variables. A single ESN was used for such task, considering a dataset of
either 5 months or 1 month of samples. The task reached reasonable results for
the first experiment, although using 5 months was more difficult since there were
undetected outliers and inconsistencies which were not removed in the current
work. The second experiment, modeling the sensor with data from only a month,
showed very good results using the same parameters (input scaling, spectral
radius, leak rate and reservoir size) for the ESN as in the first experiment. This
is because the total data used to train the RC model is very close in the temporal
dimension to the test data. This indicates that, if data is always available, the
RC model can benefit from a self-update mechanism (e.g. online learning) for
achieving superior performance.

Future work will tackle several points: removal of outliers and inconsistent
sampling periods for training dataset selection; architectural network changes
to accommodate different timescales present in the process variables (i.e., for
improving modeling small oscillations in apparently steady states conditions);
and building of an ESN-based observation model which can be used to correct
the process model output.
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